1
|
Li X, Zhu K, Zhen Y. A versatile pipeline to identify convergently lost ancestral conserved fragments associated with convergent evolution of vocal learning. Brief Bioinform 2024; 26:bbae614. [PMID: 39581870 PMCID: PMC11586126 DOI: 10.1093/bib/bbae614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/10/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Molecular convergence in convergently evolved lineages provides valuable insights into the shared genetic basis of converged phenotypes. However, most methods are limited to coding regions, overlooking the potential contribution of regulatory regions. We focused on the independently evolved vocal learning ability in multiple avian lineages, and developed a whole-genome-alignment-free approach to identify genome-wide Convergently Lost Ancestral Conserved fragments (CLACs) in these lineages, encompassing noncoding regions. We discovered 2711 CLACs that are overrepresented in noncoding regions. Proximal genes of these CLACs exhibit significant enrichment in neurological pathways, including glutamate receptor signaling pathway and axon guidance pathway. Moreover, their expression is highly enriched in brain tissues associated with speech formation. Notably, several have known functions in speech and language learning, including ROBO family, SLIT2, GRIN1, and GRIN2B. Additionally, we found significantly enriched motifs in noncoding CLACs, which match binding motifs of transcriptional factors involved in neurogenesis and gene expression regulation in brain. Furthermore, we discovered 19 candidate genes that harbor CLACs in both human and multiple avian vocal learning lineages, suggesting their potential contribution to the independent evolution of vocal learning in both birds and humans.
Collapse
Affiliation(s)
- Xiaoyi Li
- School of Life Sciences, Fudan University, 220 Handan Road, Yangpu District, Shanghai 200433, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
| | - Kangli Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
| | - Ying Zhen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
2
|
Verbesselt J, Breckpot J, Zink I, Swillen A. Language Profiles of School-Age Children With 16p11.2 Copy Number Variants in a Clinically Ascertained Cohort. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:4487-4503. [PMID: 39418585 PMCID: PMC11567083 DOI: 10.1044/2024_jslhr-24-00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Individuals with proximal 16p11.2 copy number variants (CNVs), either deletions (16p11.2DS) or duplications (16p11.2Dup), are predisposed to neurodevelopmental difficulties and disorders, such as language disorders, intellectual disability, and autism spectrum disorder. The purpose of the current study was to characterize language profiles of school-age children with proximal 16p11.2 CNVs, in relation to the normative sample and unaffected siblings of children with 16p11.2DS. METHOD Standardized language tests were conducted in 33 school-age children with BP4-BP5 16p11.2 CNVs and eight unaffected siblings of children with 16p11.2DS to evaluate language production and comprehension skills across various language domains. A standardized intelligence test was also administered, and parents completed a standardized questionnaire to assess autistic traits. Language profiles were compared across 16p11.2 CNVs and intrafamilial pairs. The influence of nonverbal intelligence and autistic traits on language outcomes was investigated. RESULTS No significant differences were found between children with 16p11.2DS and those with 16p11.2Dup, although both groups exhibited significantly poorer language skills compared to the normative sample and unaffected siblings of children with 16p11.2DS. Severe language deficits were identified in 70% of individuals with 16p11.2 CNVs across all language subdomains, with significantly better receptive vocabulary skills than overall receptive language abilities. In children with 16p11.2DS, expressive language deficits were more pronounced than receptive deficits. In contrast, only in children with 16p11.2Dup did nonverbal intelligence influence their language outcomes. CONCLUSIONS The current study contributes to the deeper understanding of language profiles in 16p11.2 CNVs in a clinically ascertained cohort, indicating generalized deficits across multiple language domains, rather than a syndrome-specific pattern targeting specific subdomains. The findings underscore the importance of early diagnosis, targeted therapy, and monitoring of language skills in children with 16p11.2 CNVs. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.27228702.
Collapse
Affiliation(s)
- Jente Verbesselt
- Department of Human Genetics, Catholic University Leuven, Belgium
- Research Group Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, Catholic University Leuven, Belgium
| | - Jeroen Breckpot
- Department of Human Genetics, Catholic University Leuven, Belgium
- Centre for Human Genetics, University Hospitals Leuven, Belgium
| | - Inge Zink
- Research Group Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, Catholic University Leuven, Belgium
- MUCLA, Department of Oto-Rhino-Laryngology, Head & Neck Surgery, University Hospitals Leuven, Belgium
| | - Ann Swillen
- Department of Human Genetics, Catholic University Leuven, Belgium
- Centre for Human Genetics, University Hospitals Leuven, Belgium
| |
Collapse
|
3
|
Molloy CJ, Cooke J, Gatford NJF, Rivera-Olvera A, Avazzadeh S, Homberg JR, Grandjean J, Fernandes C, Shen S, Loth E, Srivastava DP, Gallagher L. Bridging the translational gap: what can synaptopathies tell us about autism? Front Mol Neurosci 2023; 16:1191323. [PMID: 37441676 PMCID: PMC10333541 DOI: 10.3389/fnmol.2023.1191323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/24/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple molecular pathways and cellular processes have been implicated in the neurobiology of autism and other neurodevelopmental conditions. There is a current focus on synaptic gene conditions, or synaptopathies, which refer to clinical conditions associated with rare genetic variants disrupting genes involved in synaptic biology. Synaptopathies are commonly associated with autism and developmental delay and may be associated with a range of other neuropsychiatric outcomes. Altered synaptic biology is suggested by both preclinical and clinical studies in autism based on evidence of differences in early brain structural development and altered glutamatergic and GABAergic neurotransmission potentially perturbing excitatory and inhibitory balance. This review focusses on the NRXN-NLGN-SHANK pathway, which is implicated in the synaptic assembly, trans-synaptic signalling, and synaptic functioning. We provide an overview of the insights from preclinical molecular studies of the pathway. Concentrating on NRXN1 deletion and SHANK3 mutations, we discuss emerging understanding of cellular processes and electrophysiology from induced pluripotent stem cells (iPSC) models derived from individuals with synaptopathies, neuroimaging and behavioural findings in animal models of Nrxn1 and Shank3 synaptic gene conditions, and key findings regarding autism features, brain and behavioural phenotypes from human clinical studies of synaptopathies. The identification of molecular-based biomarkers from preclinical models aims to advance the development of targeted therapeutic treatments. However, it remains challenging to translate preclinical animal models and iPSC studies to interpret human brain development and autism features. We discuss the existing challenges in preclinical and clinical synaptopathy research, and potential solutions to align methodologies across preclinical and clinical research. Bridging the translational gap between preclinical and clinical studies will be necessary to understand biological mechanisms, to identify targeted therapies, and ultimately to progress towards personalised approaches for complex neurodevelopmental conditions such as autism.
Collapse
Affiliation(s)
- Ciara J. Molloy
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Jennifer Cooke
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Nicholas J. F. Gatford
- Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Medical Sciences Division, Oxford, United Kingdom
| | - Alejandro Rivera-Olvera
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Sahar Avazzadeh
- Physiology and Cellular Physiology Research Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland
| | - Judith R. Homberg
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Joanes Grandjean
- Physiology and Cellular Physiology Research Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Cathy Fernandes
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
- FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons, Dublin, Ireland
| | - Eva Loth
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Deepak P. Srivastava
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- The Hospital for SickKids, Toronto, ON, Canada
- The Peter Gilgan Centre for Research and Learning, SickKids Research Institute, Toronto, ON, Canada
- The Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Molloy CJ, Quigley C, McNicholas Á, Lisanti L, Gallagher L. A review of the cognitive impact of neurodevelopmental and neuropsychiatric associated copy number variants. Transl Psychiatry 2023; 13:116. [PMID: 37031194 PMCID: PMC10082763 DOI: 10.1038/s41398-023-02421-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
The heritability of intelligence or general cognitive ability is estimated at 41% and 66% in children and adults respectively. Many rare copy number variants are associated with neurodevelopmental and neuropsychiatric conditions (ND-CNV), including schizophrenia and autism spectrum disorders, and may contribute to the observed variability in cognitive ability. Here, we reviewed studies of intelligence quotient or cognitive function in ND-CNV carriers, from both general population and clinical cohorts, to understand the cognitive impact of ND-CNV in both contexts and identify potential genotype-specific cognitive phenotypes. We reviewed aggregate studies of sets ND-CNV broadly linked to neurodevelopmental and neuropsychiatric conditions, and genotype-first studies of a subset of 12 ND-CNV robustly associated with schizophrenia and autism. Cognitive impacts were observed across ND-CNV in both general population and clinical cohorts, with reports of phenotypic heterogeneity. Evidence for ND-CNV-specific impacts were limited by a small number of studies and samples sizes. A comprehensive understanding of the cognitive impact of ND-CNVs would be clinically informative and could identify potential educational needs for ND-CNV carriers. This could improve genetic counselling for families impacted by ND-CNV, and clinical outcomes for those with complex needs.
Collapse
Affiliation(s)
- Ciara J Molloy
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland.
- Trinity Centre for Health Sciences, St. James's Hospital, Dublin, Ireland.
| | - Ciara Quigley
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Health Sciences, St. James's Hospital, Dublin, Ireland
| | - Áine McNicholas
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Health Sciences, St. James's Hospital, Dublin, Ireland
| | - Linda Lisanti
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Health Sciences, St. James's Hospital, Dublin, Ireland
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Health Sciences, St. James's Hospital, Dublin, Ireland
- The Hospital for SickKids, Toronto, ON, Canada
- The Peter Gilgan Centre for Research and Learning, SickKids Research Institute, SickKids Research Institute, Toronto, ON, Canada
- The Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Khoja S, Haile MT, Chen LY. Advances in neurexin studies and the emerging role of neurexin-2 in autism spectrum disorder. Front Mol Neurosci 2023; 16:1125087. [PMID: 36923655 PMCID: PMC10009110 DOI: 10.3389/fnmol.2023.1125087] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
Over the past 3 decades, the prevalence of autism spectrum disorder (ASD) has increased globally from 20 to 28 million cases making ASD the fastest-growing developmental disability in the world. Neurexins are a family of presynaptic cell adhesion molecules that have been increasingly implicated in ASD, as evidenced by genetic mutations in the clinical population. Neurexins function as context-dependent specifiers of synapse properties and critical modulators in maintaining the balance between excitatory and inhibitory transmission (E/I balance). Disrupted E/I balance has long been established as a hallmark of ASD making neurexins excellent starting points for understanding the etiology of ASD. Herein we review neurexin mutations that have been discovered in ASD patients. Further, we discuss distinct synaptic mechanisms underlying the aberrant neurotransmission and behavioral deficits observed in different neurexin mouse models, with focus on recent discoveries from the previously overlooked neurexin-2 gene (Nrxn2 in mice and NRXN2 in humans). Hence, the aim of this review is to provide a summary of new synaptic insights into the molecular underpinnings of ASD.
Collapse
Affiliation(s)
| | | | - Lulu Y. Chen
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
6
|
Benítez-Burraco A, Jiménez-Romero MS, Fernández-Urquiza M. Delving into the Genetic Causes of Language Impairment in a Case of Partial Deletion of NRXN1. Mol Syndromol 2023; 13:496-510. [PMID: 36660026 PMCID: PMC9843585 DOI: 10.1159/000524710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/22/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Copy-number variations (CNVs) impacting on small DNA stretches and associated with language deficits provide a unique window to the role played by specific genes in language function. Methods We report in detail on the cognitive, language, and genetic features of a girl bearing a small deletion (0.186 Mb) in the 2p16.3 region, arr[hg19] 2p16.3(50761778_50947729)×1, affecting exons 3-7 of NRXN1, a neurexin-coding gene previously related to schizophrenia, autism (ASD), attention deficit hyperactivity disorder (ADHD), mood disorder, and intellectual disability (ID). Results The proband exhibits many of the features commonly found in subjects with deletions of NRXN1, like ASD-like traits (including ritualized behaviors, disordered sensory aspects, social disturbances, and impaired theory of mind), ADHD symptoms, moderate ID, and impaired speech and language. Regarding this latter aspect, we observed altered speech production, underdeveloped phonological awareness, minimal syntax, serious shortage of active vocabulary, impaired receptive language, and inappropriate pragmatic behavior (including lack of metapragmatic awareness and communicative use of gaze). Microarray analyses point to the dysregulation of several genes important for language function in the girl compared to her healthy parents. Discussion Although some basic cognitive deficit - such as the impairment of executive function - might contribute to the language problems exhibited by the proband, molecular evidence suggests that they might result, to a great extent, from the abnormal expression of genes directly related to language.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), University of Seville, Seville, Spain,*Antonio Benítez-Burraco,
| | | | | |
Collapse
|
7
|
Chenausky KV, Tager-Flusberg H. The importance of deep speech phenotyping for neurodevelopmental and genetic disorders: a conceptual review. J Neurodev Disord 2022; 14:36. [PMID: 35690736 PMCID: PMC9188130 DOI: 10.1186/s11689-022-09443-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 05/06/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Speech is the most common modality through which language is communicated, and delayed, disordered, or absent speech production is a hallmark of many neurodevelopmental and genetic disorders. Yet, speech is not often carefully phenotyped in neurodevelopmental disorders. In this paper, we argue that such deep phenotyping, defined as phenotyping that is specific to speech production and not conflated with language or cognitive ability, is vital if we are to understand how genetic variations affect the brain regions that are associated with spoken language. Speech is distinct from language, though the two are related behaviorally and share neural substrates. We present a brief taxonomy of developmental speech production disorders, with particular emphasis on the motor speech disorders childhood apraxia of speech (a disorder of motor planning) and childhood dysarthria (a set of disorders of motor execution). We review the history of discoveries concerning the KE family, in whom a hereditary form of communication impairment was identified as childhood apraxia of speech and linked to dysfunction in the FOXP2 gene. The story demonstrates how instrumental deep phenotyping of speech production was in this seminal discovery in the genetics of speech and language. There is considerable overlap between the neural substrates associated with speech production and with FOXP2 expression, suggesting that further genes associated with speech dysfunction will also be expressed in similar brain regions. We then show how a biologically accurate computational model of speech production, in combination with detailed information about speech production in children with developmental disorders, can generate testable hypotheses about the nature, genetics, and neurology of speech disorders. CONCLUSIONS Though speech and language are distinct, specific types of developmental speech disorder are associated with far-reaching effects on verbal communication in children with neurodevelopmental disorders. Therefore, detailed speech phenotyping, in collaboration with experts on pediatric speech development and disorders, can lead us to a new generation of discoveries about how speech development is affected in genetic disorders.
Collapse
Affiliation(s)
- Karen V Chenausky
- Speech in Autism and Neurodevelopmental Disorders Lab, Massachusetts General Hospital Institute of Health Professions, 36 1st Avenue, Boston, MA, 02129, USA.
- Department of Neurology, Harvard Medical School, Boston, USA.
- Department of Psychological and Brain Sciences, Boston University, Boston, USA.
| | | |
Collapse
|
8
|
Ohashi K, Fukuhara S, Miyachi T, Asai T, Imaeda M, Goto M, Kurokawa Y, Anzai T, Tsurusaki Y, Miyake N, Matsumoto N, Yamagata T, Saitoh S. Comprehensive Genetic Analysis of Non-syndromic Autism Spectrum Disorder in Clinical Settings. J Autism Dev Disord 2021; 51:4655-4662. [PMID: 33590427 DOI: 10.1007/s10803-021-04910-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2021] [Indexed: 11/29/2022]
Abstract
Although genetic factors are involved in the etiology of autism spectrum disorder (ASD), the significance of genetic analysis in clinical settings is unclear. Forty-nine subjects diagnosed with non-syndromic ASD were analyzed by microarray comparative genomic hybridization (CGH) analysis, whole-exome sequencing (WES) analysis, and panel sequencing analysis for 52 common causative genes of ASD to detect inherited rare variants. Genetic analysis by microarray CGH and WES analyses showed conclusive results in about 10% of patients, however, many inherited variants detected by panel sequencing analysis were difficult to interpret and apply in clinical practice in the majority of patients. Further improvement of interpretation of many variants detected would be necessary for combined genetic tests to be used in clinical settings.
Collapse
Affiliation(s)
- Kei Ohashi
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Satomi Fukuhara
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Taishi Miyachi
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Tomoko Asai
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Masayuki Imaeda
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Masahide Goto
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Yoshie Kurokawa
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Tatsuya Anzai
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Yoshinori Tsurusaki
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Faculty of Nutritional Science, Sagami Women's University, Kanagawa, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.
| |
Collapse
|
9
|
Brignell A, Gu C, Holm A, Carrigg B, Sheppard DA, Amor DJ, Morgan AT. Speech and language phenotype in Phelan-McDermid (22q13.3) syndrome. Eur J Hum Genet 2020; 29:564-574. [PMID: 33293697 DOI: 10.1038/s41431-020-00761-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/23/2020] [Indexed: 11/09/2022] Open
Abstract
Communication difficulties are a core feature of Phelan-McDermid syndrome (PMS). However, a specific speech and language phenotype has not been delineated, preventing prognostic counselling and development of targeted therapies. We examined speech, language, social and functional communication abilities in 21 individuals with PMS (with SHANK3 involvement), using standardised assessments. Mean age was 9.7 years (SD 4.1) and 57% were female. Deletion size ranged from 41 kb to 8.3 Mb. Nine participants (45%) were non-verbal. Four (19%) had greater verbal ability, speaking in at least 4-5 word sentences, but with speech sound errors. Standard scores for receptive and expressive language were low (typically >3 SD below the mean). Language age equivalency was 13-16 months on average (range 2-53 months). There was a significant association between deletion size and the ability to use phrases. Participants with smaller deletion sizes were more likely to be able to use phrases (odds ratio: 0.36, 95% CI: 0.14-0.95, p = 0.040). Adaptive behaviour (life skills) was low in all areas (>2 SD below mean). Scores in communication were markedly lower than for daily living (p = 0.008) and socialisation (p < 0.001). A common linguistic profile was characterised by severe impairment across receptive, expressive and social language domains. Yet data indicated greater communicative intent than appeared to be capitalised by current therapies. Early implementation of augmentative (e.g. computer-assisted) modes of communication, alongside promotion of oral language, is essential to harness this intent, accelerate language development and reduce frustration. Future trials should examine the added benefit of targeted speech motor interventions in those with greater verbal capacity.
Collapse
Affiliation(s)
- Amanda Brignell
- Murdoch Children's Research Institute, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| | - Conway Gu
- University of Melbourne, Melbourne, Australia
| | | | | | - Daisy A Sheppard
- Murdoch Children's Research Institute, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| | - David J Amor
- Murdoch Children's Research Institute, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| | - Angela T Morgan
- Murdoch Children's Research Institute, Melbourne, Australia. .,University of Melbourne, Melbourne, Australia.
| |
Collapse
|
10
|
Castronovo P, Baccarin M, Ricciardello A, Picinelli C, Tomaiuolo P, Cucinotta F, Frittoli M, Lintas C, Sacco R, Persico AM. Phenotypic spectrum of NRXN1 mono- and bi-allelic deficiency: A systematic review. Clin Genet 2019; 97:125-137. [PMID: 30873608 DOI: 10.1111/cge.13537] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 01/13/2023]
Abstract
Neurexins are presynaptic cell adhesion molecules critically involved in synaptogenesis and vesicular neurotransmitter release. They are encoded by three genes (NRXN1-3), each yielding a longer alpha (α) and a shorter beta (β) transcript. Deletions spanning the promoter and the initial exons of the NRXN1 gene, located in chromosome 2p16.3, are associated with a variety of neurodevelopmental, psychiatric, neurological and neuropsychological phenotypes. We have performed a systematic review to define (a) the clinical phenotypes most associated with mono-allelic exonic NRXN1 deletions, and (b) the phenotypic features of NRXN1 bi-allelic deficiency due to compound heterozygous deletions/mutations. Clinically, three major conclusions can be drawn: (a) incomplete penetrance and pleiotropy do not allow reliable predictions of clinical outcome following prenatal detection of mono-allelic exonic NRXN1 deletions. Newborn carriers should undergo periodic neuro-behavioral observations for the timely detection of warning signs and the prescription of early behavioral intervention; (b) the presence of additional independent genetic risk factors should always be sought, as they may influence prognosis; (c) children with exonic NRXN1 deletions displaying early-onset, severe psychomotor delay in the context of a Pitt-Hopkins-like syndrome 2 phenotype, should undergo DNA sequencing of the spared NRXN1 allele in search for mutations or very small insertions/deletions.
Collapse
Affiliation(s)
- Paola Castronovo
- Laboratory for Pervasive Developmental Disorders, Mafalda Luce Center, Milan, Italy
| | - Marco Baccarin
- Laboratory for Pervasive Developmental Disorders, Mafalda Luce Center, Milan, Italy
| | - Arianna Ricciardello
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Chiara Picinelli
- Laboratory for Pervasive Developmental Disorders, Mafalda Luce Center, Milan, Italy
| | - Pasquale Tomaiuolo
- Laboratory for Pervasive Developmental Disorders, Mafalda Luce Center, Milan, Italy
| | - Francesca Cucinotta
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Myriam Frittoli
- Laboratory for Pervasive Developmental Disorders, Mafalda Luce Center, Milan, Italy
| | - Carla Lintas
- Service for Neurodevelopmental Disorders & Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy
| | - Roberto Sacco
- Service for Neurodevelopmental Disorders & Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy
| | - Antonio M Persico
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| |
Collapse
|