1
|
Makker S, Gagnon BR, Trew I, Mougios V, Hanna A, Cale JM, McIntosh CS. A Patient Case of Malan Syndrome Involving 19p13.2 Deletion of NFIX with Longitudinal Follow-Up and Future Prospectives. J Clin Med 2024; 13:6575. [PMID: 39518712 PMCID: PMC11546576 DOI: 10.3390/jcm13216575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Background and Objectives: Malan syndrome is a rare overgrowth syndrome resulting from NFIX haploinsufficiency due to heterozygous loss-of-function mutations or microdeletions of NFIX on chromosome 19 at p13.2. Phenotypic presentation can vary but is characterized by macrocephaly, long and slender body habitus, skeletal abnormalities, and intellectual disability. Methods: Here, we report on the presentation, management, and development of a patient with Malan syndrome, highlighting the clinical and behavioral aspects of this syndrome, therapeutic interventions employed, and the course of disease over a 15-year period. We review medical records, cytogenetic analysis and neuropsychologic testing results, as well as speech pathology, optometric, and medical reports. In addition, we discuss personalized therapeutic strategies that could potentially be exploited in the future for such overgrowth syndromes. Results: To our knowledge, this is the first longitudinal follow-up report of a case of Malan syndrome to highlight the clinical course, interventions employed, and resulting improvements in neurocognitive function over time. Conclusions: This case highlights the importance of early diagnosis, intervention, and preventative care in overgrowth syndromes, as well as the potential for therapeutic intervention in the future.
Collapse
Affiliation(s)
| | - Bernadine R. Gagnon
- Edward D. Mysak Clinic for Communication Disorders, Teachers College, Columbia University, New York, NY 10027, USA;
| | - Isabella Trew
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (I.T.); (J.M.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Vivian Mougios
- Action Potential Institute, 145 W 96th S, New York, NY 10025, USA;
| | - Anne Hanna
- Gold Coast Optometric Vision Performance, Oyster Bay, NY 11771, USA;
| | - Jessica M. Cale
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (I.T.); (J.M.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Craig S. McIntosh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (I.T.); (J.M.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| |
Collapse
|
2
|
Yüksel Ülker A, Uludağ Alkaya D, Çağlayan AO, Usluer E, Aykut A, Aslanger A, Vural M, Tüysüz B. An investigation of the etiology and follow-up findings in 35 children with overgrowth syndromes, including biallelic SUZ12 variant. Am J Med Genet A 2023; 191:1530-1545. [PMID: 36919607 DOI: 10.1002/ajmg.a.63180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/01/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023]
Abstract
Overgrowth-intellectual disability (OGID) syndromes are clinically and genetically heterogeneous group of disorders. The aim of this study was to examine the molecular etiology and long-term follow-up findings of Turkish OGID cohort. Thirty-five children with OGID were included in the study. Single gene sequencing, clinical exome analysis, chromosomal microarray analysis and whole exome sequencing were performed. Five pathogenic copy number variants were detected in the patients; three of them located on chromosome 5q35.2 (encompassing NSD1), others on 9q22.3 and 22q13.31. In 19 of 35 patients; we identified pathogenic variants in OGID genes associated with epigenetic regulation, NSD1 (n = 15), HIST1H1E (n = 1), SETD1B (n = 1), and SUZ12 (n = 2). The pathogenic variants in PIK3CA (n = 2), ABCC9 (n = 1), GPC4 (n = 2), FIBP (n = 1), and TMEM94 (n = 1) which had a role in other growth pathways were detected in seven patients. The diagnostic yield was 31/35(88%). Twelve pathogenic variants were novel. The common facial feature of the patients was prominent forehead. The patients with Sotos syndrome were observed to have milder intellectual disability than patients with other OGID syndromes. In conclusion, this study showed, for the first time, that biallelic variants of SUZ12 caused Imagawa-Matsumoto syndrome, monoallelic variants in SETDIB resulted in OGID. Besides expanded the phenotypes of very rare OGID syndromes caused by FIBP and TMEM94.
Collapse
Affiliation(s)
- Aylin Yüksel Ülker
- Department of Pediatric Genetics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Dilek Uludağ Alkaya
- Department of Pediatric Genetics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Okay Çağlayan
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Esra Usluer
- Department of Pediatric Genetics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ayça Aykut
- Department of Medical Genetics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ayça Aslanger
- Department of Medical Genetics, Bezmialem University, Istanbul, Turkey
| | - Mehmet Vural
- Department of Neonatology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Beyhan Tüysüz
- Department of Pediatric Genetics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
3
|
Ongoing Challenges in the Diagnosis of 11p15.5-Associated Imprinting Disorders. Mol Diagn Ther 2022; 26:263-272. [PMID: 35522427 DOI: 10.1007/s40291-022-00587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
The overgrowth disorder Beckwith-Wiedemann syndrome and the growth restriction disorder Silver-Russell syndrome have been described as 'mirror' syndromes, in both their clinical features and molecular causes. Clinically, their nonspecific features, focused around continuous variables of atypical growth, make it hard to set diagnostic thresholds that are pragmatic without potentially excluding some cases. Molecularly, both are imprinting disorders, classically associated with 'opposite' genetic and epigenetic changes to genes on chromosome 11p15, but both are associated with somatic mosaicism as well as an increasing range of alternative (epi)genetic changes to other genes, which make molecular diagnosis an increasingly complex process. In this Current Opinion, we explore how the understanding of Beckwith-Wiedemann syndrome and Silver-Russell syndrome has evolved in recent years, stretching the canonical 'mirror' designations in different ways for the two disorders and how this is changing clinical and molecular diagnosis. We suggest some possible directions of travel toward more timely and stratified diagnosis, so that patients can access the early interventions that are so critical for good outcome.
Collapse
|
4
|
Lan LB, Li DZ. Idiopathic polyhydramnios and foetal macrosomia in the absence of maternal diabetes: clinical vigilance for costello syndrome. J OBSTET GYNAECOL 2021; 42:704-706. [PMID: 34689704 DOI: 10.1080/01443615.2021.1959533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Liu-Bing Lan
- Department of Obstetrics, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China
| | - Dong-Zhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Moirangthem A, Mandal K, Saxena D, Srivastava P, Gambhir PS, Agrawal N, Shambhavi A, Nampoothiri S, Phadke SR. Genetic heterogeneity of disorders with overgrowth and intellectual disability: Experience from a center in North India. Am J Med Genet A 2021; 185:2345-2355. [PMID: 33942996 DOI: 10.1002/ajmg.a.62241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/25/2021] [Accepted: 04/10/2021] [Indexed: 12/24/2022]
Abstract
Overgrowth, defined as height and/or OFC ≥ +2SD, characterizes a subset of patients with syndromic intellectual disability (ID). Many of the disorders with overgrowth and ID (OGID) are rare and the full phenotypic and genotypic spectra have not been unraveled. This study was undertaken to characterize the phenotypic and genotypic profile of patients with OGID. Patients with OGID were ascertained from the cohort of patients who underwent cytogenetic microarray (CMA) and/or exome sequencing (ES) at our center over a period of 6 years. Thirty-one subjects (six females) formed the study group with ages between 3.5 months and 13 years. CMA identified pathogenic deletions in two patients. In another 11 patients, a disease causing variant was detected by ES. The spectrum of disorders encompassed aberrations in genes involved in the two main pathways associated with OGID. These were genes involved in epigenetic regulation like NSD1, NFIX, FOXP1, and those in the PI3K-AKT pathway like PTEN, AKT3, TSC2, PPP2R5D. Five novel pathogenic variants were added by this study. NSD1-related Sotos syndrome was the most common disorder, seen in five patients. A causative variant was identified in 61.5% of patients who underwent only ES compared to the low yield of 11.1% in the CMA group. The molecular etiology could be confirmed in 13 subjects with OGID giving a diagnostic yield of 42%. The major burden was formed by autosomal dominant monogenic disorders. Hence, ES maybe a better first-tier genomic test rather than CMA in OGID.
Collapse
Affiliation(s)
- Amita Moirangthem
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Deepti Saxena
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Priyanka Srivastava
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Poonam Singh Gambhir
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Neha Agrawal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Arya Shambhavi
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, AIMS, Cochin, Kerala, India
| | - Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
Wesseler K, Kraft F, Eggermann T. Molecular and Clinical Opposite Findings in 11p15.5 Associated Imprinting Disorders: Characterization of Basic Mechanisms to Improve Clinical Management. Int J Mol Sci 2019; 20:ijms20174219. [PMID: 31466347 PMCID: PMC6747273 DOI: 10.3390/ijms20174219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
Silver-Russell and Beckwith-Wiedemann syndromes (SRS, BWS) are rare congenital human disorders characterized by opposite growth disturbances. With the increasing knowledge on the molecular basis of SRS and BWS, it has become obvious that the disorders mirror opposite alterations at the same genomic loci in 11p15.5. In fact, these changes directly or indirectly affect the expression of IGF2 and CDKN1C and their associated pathways, and thereby, cause growth disturbances as key features of both diseases. The increase of knowledge has become possible with the development and implementation of new and comprehensive assays. Whereas, in the beginning molecular testing was restricted to single chromosomal loci, many tests now address numerous loci in the same run, and the diagnostic implementation of (epi)genome wide assays is only a question of time. These high-throughput approaches will be complemented by the analysis of other omic datasets (e.g., transcriptome, metabolome, proteome), and it can be expected that the integration of these data will massively improve the understanding of the pathobiology of imprinting disorders and their diagnostics. Especially long-read sequencing methods, e.g., nanopore sequencing, allowing direct detection of native DNA modification, will strongly contribute to a better understanding of genomic imprinting in the near future. Thereby, new genomic loci and types of pathogenic variants will be identified, resulting in more precise discrimination into different molecular subgroups. These subgroups serve as the basis for (epi)genotype-phenotype correlations, allowing a more directed prognosis, counseling, and therapy. By deciphering the pathophysiological consequences of SRS and BWS and their molecular disturbances, future therapies will be available targeting the basic cause of the disease and respective pathomechanisms and will complement conventional therapeutic strategies.
Collapse
Affiliation(s)
- Katharina Wesseler
- Institute of Human Genetics, University Hospital, Technical University Aachen (RWTH), 52074 Aachen, Germany
| | - Florian Kraft
- Institute of Human Genetics, University Hospital, Technical University Aachen (RWTH), 52074 Aachen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, University Hospital, Technical University Aachen (RWTH), 52074 Aachen, Germany.
| |
Collapse
|
7
|
Brioude F, Toutain A, Giabicani E, Cottereau E, Cormier-Daire V, Netchine I. Overgrowth syndromes - clinical and molecular aspects and tumour risk. Nat Rev Endocrinol 2019; 15:299-311. [PMID: 30842651 DOI: 10.1038/s41574-019-0180-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Overgrowth syndromes are a heterogeneous group of rare disorders characterized by generalized or segmental excessive growth commonly associated with additional features, such as visceromegaly, macrocephaly and a large range of various symptoms. These syndromes are caused by either genetic or epigenetic anomalies affecting factors involved in cell proliferation and/or the regulation of epigenetic markers. Some of these conditions are associated with neurological anomalies, such as cognitive impairment or autism. Overgrowth syndromes are frequently associated with an increased risk of cancer (embryonic tumours during infancy or carcinomas during adulthood), but with a highly variable prevalence. Given this risk, syndrome-specific tumour screening protocols have recently been established for some of these conditions. Certain specific clinical traits make it possible to discriminate between different syndromes and orient molecular explorations to determine which molecular tests to conduct, despite the syndromes having overlapping clinical features. Recent advances in molecular techniques using next-generation sequencing approaches have increased the number of patients with an identified molecular defect (especially patients with segmental overgrowth). This Review discusses the clinical and molecular diagnosis, tumour risk and recommendations for tumour screening for the most prevalent generalized and segmental overgrowth syndromes.
Collapse
Affiliation(s)
- Frédéric Brioude
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, AP-HP Hôpital Trousseau, Paris, France.
| | - Annick Toutain
- CHU de Tours, Hôpital Bretonneau, Service de Génétique, INSERM UMR1253, iBrain, Université de Tours, Faculté de Médecine, Tours, France
| | - Eloise Giabicani
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, AP-HP Hôpital Trousseau, Paris, France
| | - Edouard Cottereau
- CHU de Tours, Hôpital Bretonneau, Service de Génétique, Tours, France
| | - Valérie Cormier-Daire
- Service de génétique clinique, Université Paris Descartes-Sorbonne Paris Cité, INSERM UMR1163, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Irene Netchine
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, AP-HP Hôpital Trousseau, Paris, France
| |
Collapse
|
8
|
Marques P, Korbonits M. Pseudoacromegaly. Front Neuroendocrinol 2019; 52:113-143. [PMID: 30448536 DOI: 10.1016/j.yfrne.2018.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/30/2018] [Accepted: 11/14/2018] [Indexed: 01/19/2023]
Abstract
Individuals with acromegaloid physical appearance or tall stature may be referred to endocrinologists to exclude growth hormone (GH) excess. While some of these subjects could be healthy individuals with normal variants of growth or physical traits, others will have acromegaly or pituitary gigantism, which are, in general, straightforward diagnoses upon assessment of the GH/IGF-1 axis. However, some patients with physical features resembling acromegaly - usually affecting the face and extremities -, or gigantism - accelerated growth/tall stature - will have no abnormalities in the GH axis. This scenario is termed pseudoacromegaly, and its correct diagnosis can be challenging due to the rarity and variability of these conditions, as well as due to significant overlap in their characteristics. In this review we aim to provide a comprehensive overview of pseudoacromegaly conditions, highlighting their similarities and differences with acromegaly and pituitary gigantism, to aid physicians with the diagnosis of patients with pseudoacromegaly.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
9
|
Vuillaume ML, Moizard MP, Rossignol S, Cottereau E, Vonwill S, Alessandri JL, Busa T, Colin E, Gérard M, Giuliano F, Lambert L, Lefevre M, Kotecha U, Nampoothiri S, Netchine I, Raynaud M, Brioude F, Toutain A. Mutation update for the GPC3 gene involved in Simpson-Golabi-Behmel syndrome and review of the literature. Hum Mutat 2018; 39:790-805. [PMID: 29637653 DOI: 10.1002/humu.23428] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/22/2018] [Accepted: 04/02/2018] [Indexed: 11/08/2022]
Abstract
Simpson-Golabi-Behmel syndrome (SGBS) is an X-linked multiple congenital anomalies and overgrowth syndrome caused by a defect in the glypican-3 gene (GPC3). Until now, GPC3 mutations have been reported in isolated cases or small series and the global genotypic spectrum of these mutations has never been delineated. In this study, we review the 57 previously described GPC3 mutations and significantly expand this mutational spectrum with the description of 29 novel mutations. Compiling our data and those of the literature, we provide an overview of 86 distinct GPC3 mutations identified in 120 unrelated families, ranging from single nucleotide variations to complex genomic rearrangements and dispersed throughout the entire coding region of GPC3. The vast majority of them are deletions or truncating mutations (frameshift, nonsense mutations) predicted to result in a loss-of-function. Missense mutations are rare and the two which were functionally characterized, impaired GPC3 function by preventing GPC3 cleavage and cell surface addressing respectively. This report by describing for the first time the wide mutational spectrum of GPC3 could help clinicians and geneticists in interpreting GPC3 variants identified incidentally by high-throughput sequencing technologies and also reinforces the need for functional validation of non-truncating mutations (missense, in frame mutations, duplications).
Collapse
Affiliation(s)
- Marie-Laure Vuillaume
- Service de Génétique, CHU de Tours, Hôpital Bretonneau, Tours, France.,INSERM UMR_U930, Faculté de Médecine, Université de Tours, Tours, France
| | - Marie-Pierre Moizard
- Service de Génétique, CHU de Tours, Hôpital Bretonneau, Tours, France.,INSERM UMR_U930, Faculté de Médecine, Université de Tours, Tours, France
| | - Sylvie Rossignol
- Unité d'explorations fonctionnelles endocriniennes, CHU Paris Est, Hôpital d'Enfants Armand-Trousseau, Paris, France.,Service de génétique médicale, CHU de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Edouard Cottereau
- Service de Génétique, CHU de Tours, Hôpital Bretonneau, Tours, France
| | - Sandrine Vonwill
- Service de Génétique, CHU de Tours, Hôpital Bretonneau, Tours, France.,INSERM UMR_U930, Faculté de Médecine, Université de Tours, Tours, France
| | | | - Tiffany Busa
- Unité de Génétique Clinique, Département de génétique médicale, Hôpital de la Timone, CHU de Marseille, Marseille, France
| | - Estelle Colin
- Département de biochimie et génétique, CHU d'Angers, Angers, France
| | - Marion Gérard
- Service de génétique, CHU de Caen, Hôpital Clémenceau, Avenue Georges Clémenceau, Caen, France
| | - Fabienne Giuliano
- Service de génétique médicale, CHU de Nice, Hôpital l'Archet 2, Nice, France
| | - Laetitia Lambert
- Service de Génétique Clinique, Hôpital d'Enfants, CHU de Nancy, Rue du Morvan, Vandoeuvre-Lès-Nancy, France
| | - Mathilde Lefevre
- Centre de génétique, Hôpital d'enfants, CHU Dijon Bourgogne, Dijon, France
| | - Udhaya Kotecha
- Center of Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Center, AIMS Poneakara P O, Cochin, Kerala, India
| | - Irène Netchine
- Unité d'explorations fonctionnelles endocriniennes, CHU Paris Est, Hôpital d'Enfants Armand-Trousseau, Paris, France
| | - Martine Raynaud
- Service de Génétique, CHU de Tours, Hôpital Bretonneau, Tours, France.,INSERM UMR_U930, Faculté de Médecine, Université de Tours, Tours, France
| | - Frédéric Brioude
- Unité d'explorations fonctionnelles endocriniennes, CHU Paris Est, Hôpital d'Enfants Armand-Trousseau, Paris, France
| | - Annick Toutain
- Service de Génétique, CHU de Tours, Hôpital Bretonneau, Tours, France.,INSERM UMR_U930, Faculté de Médecine, Université de Tours, Tours, France
| |
Collapse
|
10
|
Kamien B, Ronan A, Poke G, Sinnerbrink I, Baynam G, Ward M, Gibson WT, Dudding-Byth T, Scott RJ. A Clinical Review of Generalized Overgrowth Syndromes in the Era of Massively Parallel Sequencing. Mol Syndromol 2018; 9:70-82. [PMID: 29593474 DOI: 10.1159/000484532] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
The overgrowth syndromes are important to diagnose, not just for accurate genetic counseling, but also for knowledge surrounding cancer surveillance and prognosis. There has been a recent expansion in the number of genes associated with a mendelian overgrowth phenotype, so this review updates previous classifications of overgrowth syndromes. We also describe a clinical and molecular approach to the investigation of individuals presenting with overgrowth. This review aims to assist the clinical diagnosis of generalized overgrowth syndromes by outlining the salient features of well-known overgrowth syndromes alongside the many syndromes that have been discovered and classified more recently. We provide key clinical "handles" to aid clinical diagnosis and a list of genes to aid with panel design when using next generation sequencing, which we believe is frequently needed due to the overlapping phenotypic features seen between overgrowth syndromes.
Collapse
Affiliation(s)
- Benjamin Kamien
- Hunter Genetics, Perth, WA, Australia.,School of Medicine and Public Health, The University of Newcastle, Perth, WA, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
| | - Anne Ronan
- Hunter Genetics, Perth, WA, Australia.,School of Medicine and Public Health, The University of Newcastle, Perth, WA, Australia
| | - Gemma Poke
- Department of Clinical Genetics, Capital & Coast District Health Board, Wellington, New Zealand
| | - Ingrid Sinnerbrink
- Department of Clinical Genetics, Nepean Hospital, Perth, WA, Australia.,Nepean Clinical School, University of Sydney, Penrith, NSW, Australia
| | - Gareth Baynam
- Genetic Services of Western Australia, Newcastle, NSW, Australia.,Western Australian Register of Developmental Anomalies, Perth, WA, Australia.,Office of Population Health Genomics, Public Health Division, Department of Health, Government of Western Australia, Perth, WA, Australia.,School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia.,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Spatial Sciences, Department of Science and Engineering, Curtin University, Perth, WA, Australia
| | - Michelle Ward
- Genetic Services of Western Australia, Newcastle, NSW, Australia
| | - William T Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Tracy Dudding-Byth
- Hunter Genetics, Perth, WA, Australia.,GrowUpWell Priority Research Center, Perth, WA, Australia.,School of Medicine and Public Health, The University of Newcastle, Perth, WA, Australia.,Hunter Medical Research Institute, Perth, WA, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Molecular Pathology, Hunter Area Pathology Service, Perth, WA, Australia
| |
Collapse
|
11
|
Aref-Eshghi E, Rodenhiser DI, Schenkel LC, Lin H, Skinner C, Ainsworth P, Paré G, Hood RL, Bulman DE, Kernohan KD, Boycott KM, Campeau PM, Schwartz C, Sadikovic B, Sadikovic B. Genomic DNA Methylation Signatures Enable Concurrent Diagnosis and Clinical Genetic Variant Classification in Neurodevelopmental Syndromes. Am J Hum Genet 2018; 102:156-174. [PMID: 29304373 DOI: 10.1016/j.ajhg.2017.12.008] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/10/2017] [Indexed: 01/23/2023] Open
Abstract
Pediatric developmental syndromes present with systemic, complex, and often overlapping clinical features that are not infrequently a consequence of Mendelian inheritance of mutations in genes involved in DNA methylation, establishment of histone modifications, and chromatin remodeling (the "epigenetic machinery"). The mechanistic cross-talk between histone modification and DNA methylation suggests that these syndromes might be expected to display specific DNA methylation signatures that are a reflection of those primary errors associated with chromatin dysregulation. Given the interrelated functions of these chromatin regulatory proteins, we sought to identify DNA methylation epi-signatures that could provide syndrome-specific biomarkers to complement standard clinical diagnostics. In the present study, we examined peripheral blood samples from a large cohort of individuals encompassing 14 Mendelian disorders displaying mutations in the genes encoding proteins of the epigenetic machinery. We demonstrated that specific but partially overlapping DNA methylation signatures are associated with many of these conditions. The degree of overlap among these epi-signatures is minimal, further suggesting that, consistent with the initial event, the downstream changes are unique to every syndrome. In addition, by combining these epi-signatures, we have demonstrated that a machine learning tool can be built to concurrently screen for multiple syndromes with high sensitivity and specificity, and we highlight the utility of this tool in solving ambiguous case subjects presenting with variants of unknown significance, along with its ability to generate accurate predictions for subjects presenting with the overlapping clinical and molecular features associated with the disruption of the epigenetic machinery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A5C1, Canada; Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON N6A5W9, Canada.
| |
Collapse
|
12
|
Chang F, Liu L, Fang E, Zhang G, Chen T, Cao K, Li Y, Li MM. Molecular Diagnosis of Mosaic Overgrowth Syndromes Using a Custom-Designed Next-Generation Sequencing Panel. J Mol Diagn 2017; 19:613-624. [DOI: 10.1016/j.jmoldx.2017.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/27/2017] [Accepted: 04/18/2017] [Indexed: 12/19/2022] Open
|
13
|
Figueiró HV, Li G, Trindade FJ, Assis J, Pais F, Fernandes G, Santos SHD, Hughes GM, Komissarov A, Antunes A, Trinca CS, Rodrigues MR, Linderoth T, Bi K, Silveira L, Azevedo FCC, Kantek D, Ramalho E, Brassaloti RA, Villela PMS, Nunes ALV, Teixeira RHF, Morato RG, Loska D, Saragüeta P, Gabaldón T, Teeling EC, O’Brien SJ, Nielsen R, Coutinho LL, Oliveira G, Murphy WJ, Eizirik E. Genome-wide signatures of complex introgression and adaptive evolution in the big cats. SCIENCE ADVANCES 2017; 3:e1700299. [PMID: 28776029 PMCID: PMC5517113 DOI: 10.1126/sciadv.1700299] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/19/2017] [Indexed: 05/05/2023]
Abstract
The great cats of the genus Panthera comprise a recent radiation whose evolutionary history is poorly understood. Their rapid diversification poses challenges to resolving their phylogeny while offering opportunities to investigate the historical dynamics of adaptive divergence. We report the sequence, de novo assembly, and annotation of the jaguar (Panthera onca) genome, a novel genome sequence for the leopard (Panthera pardus), and comparative analyses encompassing all living Panthera species. Demographic reconstructions indicated that all of these species have experienced variable episodes of population decline during the Pleistocene, ultimately leading to small effective sizes in present-day genomes. We observed pervasive genealogical discordance across Panthera genomes, caused by both incomplete lineage sorting and complex patterns of historical interspecific hybridization. We identified multiple signatures of species-specific positive selection, affecting genes involved in craniofacial and limb development, protein metabolism, hypoxia, reproduction, pigmentation, and sensory perception. There was remarkable concordance in pathways enriched in genomic segments implicated in interspecies introgression and in positive selection, suggesting that these processes were connected. We tested this hypothesis by developing exome capture probes targeting ~19,000 Panthera genes and applying them to 30 wild-caught jaguars. We found at least two genes (DOCK3 and COL4A5, both related to optic nerve development) bearing significant signatures of interspecies introgression and within-species positive selection. These findings indicate that post-speciation admixture has contributed genetic material that facilitated the adaptive evolution of big cat lineages.
Collapse
Affiliation(s)
- Henrique V. Figueiró
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Gang Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Fernanda J. Trindade
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Juliana Assis
- Centro de Pesquisa René Rachou, FIOCRUZ/Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Fabiano Pais
- Centro de Pesquisa René Rachou, FIOCRUZ/Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Fernandes
- Centro de Pesquisa René Rachou, FIOCRUZ/Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Sarah H. D. Santos
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Graham M. Hughes
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Aleksey Komissarov
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, St. Petersburg, Russia
| | - Agostinho Antunes
- Departamento de Biologia, Faculdade de Ciências and CIIMAR/CIMAR, Universidade do Porto, Porto, Portugal
| | - Cristine S. Trinca
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Maíra R. Rodrigues
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Tyler Linderoth
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720–3140, USA
| | - Ke Bi
- Computational Genomics Resource Laboratory, California Institute for Quantitative Biosciences and Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Fernando C. C. Azevedo
- Universidade Federal de São João Del Rey, São João Del Rey, Minas Gerais, Brazil
- Instituto Pró-Carnívoros, Atibaia, São Paulo, Brazil
| | - Daniel Kantek
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
- Instituto Chico Mendes de Conservação da Biodiversidade, Brasília, Distrito Federal, Brazil
| | - Emiliano Ramalho
- Instituto Pró-Carnívoros, Atibaia, São Paulo, Brazil
- Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, Amazonas, Brazil
| | - Ricardo A. Brassaloti
- Escola Superior de Agricultura Luiz de Queiroz (ESALQ-USP), Piracicaba, São Paulo, Brazil
| | | | | | - Rodrigo H. F. Teixeira
- Zoológico Municipal de Sorocaba, Sorocaba, São Paulo, Brazil
- Programa de Pós-Graduação em Animais Selvagens, Universidade Estadual Paulista–Botucatu, São Paulo, Brazil
| | - Ronaldo G. Morato
- Instituto Pró-Carnívoros, Atibaia, São Paulo, Brazil
- Instituto Chico Mendes de Conservação da Biodiversidade, Brasília, Distrito Federal, Brazil
| | - Damian Loska
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Emma C. Teeling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Stephen J. O’Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, St. Petersburg, Russia
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720–3140, USA
| | - Luiz L. Coutinho
- Escola Superior de Agricultura Luiz de Queiroz (ESALQ-USP), Piracicaba, São Paulo, Brazil
| | - Guilherme Oliveira
- Centro de Pesquisa René Rachou, FIOCRUZ/Minas, Belo Horizonte, Minas Gerais, Brazil
- Instituto Tecnológico Vale, Belém, Pará, Brazil
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Eduardo Eizirik
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
- Instituto Pró-Carnívoros, Atibaia, São Paulo, Brazil
| |
Collapse
|
14
|
Yeo CR, Agrawal M, Hoon S, Shabbir A, Shrivastava MK, Huang S, Khoo CM, Chhay V, Yassin MS, Tai ES, Vidal-Puig A, Toh SA. SGBS cells as a model of human adipocyte browning: A comprehensive comparative study with primary human white subcutaneous adipocytes. Sci Rep 2017; 7:4031. [PMID: 28642596 PMCID: PMC5481408 DOI: 10.1038/s41598-017-04369-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/19/2017] [Indexed: 01/20/2023] Open
Abstract
The Simpson Golabi Behmel Syndrome (SGBS) pre-adipocyte cell strain is widely considered to be a representative in vitro model of human white pre-adipocytes. A recent study suggested that SGBS adipocytes exhibit an unexpected transient brown phenotype. Here, we comprehensively examined key differences between SGBS adipocytes and primary human white subcutaneous (PHWSC) adipocytes. RNA-Seq analysis revealed that extracellular matrix (ECM)-receptor interaction and metabolic pathways were the top two KEGG pathways significantly enriched in SGBS adipocytes, which included positively enriched mitochondrial respiration and oxidation pathways. Compared to PHWSC adipocytes, SGBS adipocytes showed not only greater induction of adipogenic gene expression during differentiation but also increased levels of UCP1 mRNA and protein expression. Functionally, SGBS adipocytes displayed higher ISO-induced basal leak respiration and overall oxygen consumption rate, along with increased triglyceride accumulation and insulin-stimulated glucose uptake. In conclusion, we confirmed that SGBS adipocytes, which are considered of white adipose tissue origin can shift towards a brown/beige adipocyte phenotype. These differences indicate SGBS cells may help to identify mechanisms leading to browning, and inform our understanding for the use of SGBS vis-à-vis primary human subcutaneous adipocytes as a human white adipocyte model, guiding the selection of appropriate cell models in future metabolic research.
Collapse
Affiliation(s)
- Chia Rou Yeo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
| | - Madhur Agrawal
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
| | - Shawn Hoon
- Molecular Engineering Laboratory, Biomedical Sciences Institutes, A*Star, 138668, Singapore, Singapore
| | - Asim Shabbir
- Department of Surgery, National University Hospital, 119074, Singapore, Singapore
| | - Manu Kunaal Shrivastava
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Shiqi Huang
- Food Science and Technology Program, Department of Chemistry, National University of Singapore, Singapore, 117542, Singapore
| | - Chin Meng Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
- Department of Medicine, National University Health System, 119228, Singapore, Singapore
| | - Vanna Chhay
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
| | - M Shabeer Yassin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
| | - E Shyong Tai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
- Department of Medicine, National University Health System, 119228, Singapore, Singapore
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Sue-Anne Toh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore.
- Department of Medicine, National University Health System, 119228, Singapore, Singapore.
| |
Collapse
|
15
|
Abdalla E, Bartsch O, Galetzka D, Zechner U. Novel clinical findings in the first Egyptian case of Sotos syndrome caused by complete deletion of the NSD1 gene. Am J Med Genet A 2017; 173:1090-1093. [PMID: 28328121 DOI: 10.1002/ajmg.a.38107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 12/05/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Ebtesam Abdalla
- Faculty of Medicine, Department of Genetic Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Oliver Bartsch
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Danuta Galetzka
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ulrich Zechner
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
16
|
Dong HY, Zeng H, Hu YQ, Xie L, Wang J, Wang XY, Yang YF, Tan ZP. 19p13.2 Microdeletion including NFIX associated with overgrowth and intellectual disability suggestive of Malan syndrome. Mol Cytogenet 2016; 9:71. [PMID: 27688808 PMCID: PMC5034553 DOI: 10.1186/s13039-016-0282-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 09/13/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Overgrowth syndromes represent clinically and genetically heterogeneous conditions characterized by a wide spectrum of malformations, tall stature, intellectual disability and/or macrocephaly. RESULTS In a cohort of four clinically characterized patients with overgrowth syndrome without known causative gene mutation, we performed an Illumina SNP-array analysis to identify the pathogenic copy number variations. We identified two rare copy number variations harboring overgrowth syndrome related genes. Patient 1 was Malan syndrome with a 1.4 Mb 19p13.2-13.13 microdeletion including NFIX, and Patient 2 was identified as Sotos syndrome with a 1.6 Mb 5q35.2 microdeletion encompassing NSD1. CONCLUSIONS We identified two patients associated with Manlan syndrome and Sotos syndrome respectively. We also discuss the use of the microarrays-based candidate gene strategy in Mendelian disease-gene identification.
Collapse
Affiliation(s)
- Hai-Yun Dong
- Intensive Care Unit, Central South University, Changsha, Hunan Province 410011 China
| | - Hui Zeng
- Clinical Center for Gene Diagnosis and Therapy of State Key Laboratory of Medical Genetics, The Second Xiangya Hospital of Central South University, 139# Renmin Road, Changsha, Hunan 410011 China ; Department of Cardiothoracic Surgery, Central South University, Changsha, Hunan Province 410011 China
| | - Yi-Qiao Hu
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan Province 410011 China
| | - Li Xie
- Clinical Center for Gene Diagnosis and Therapy of State Key Laboratory of Medical Genetics, The Second Xiangya Hospital of Central South University, 139# Renmin Road, Changsha, Hunan 410011 China ; Department of Cardiothoracic Surgery, Central South University, Changsha, Hunan Province 410011 China
| | - Jian Wang
- Clinical Center for Gene Diagnosis and Therapy of State Key Laboratory of Medical Genetics, The Second Xiangya Hospital of Central South University, 139# Renmin Road, Changsha, Hunan 410011 China ; Department of Cardiothoracic Surgery, Central South University, Changsha, Hunan Province 410011 China
| | - Xiu-Ying Wang
- Department of Pediatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan Province 410011 China
| | - Yi-Feng Yang
- Clinical Center for Gene Diagnosis and Therapy of State Key Laboratory of Medical Genetics, The Second Xiangya Hospital of Central South University, 139# Renmin Road, Changsha, Hunan 410011 China ; Department of Cardiothoracic Surgery, Central South University, Changsha, Hunan Province 410011 China
| | - Zhi-Ping Tan
- Clinical Center for Gene Diagnosis and Therapy of State Key Laboratory of Medical Genetics, The Second Xiangya Hospital of Central South University, 139# Renmin Road, Changsha, Hunan 410011 China ; Department of Cardiothoracic Surgery, Central South University, Changsha, Hunan Province 410011 China
| |
Collapse
|
17
|
Magini P, Palombo F, Boito S, Lanzoni G, Mongelli P, Rizzuti T, Baccarin M, Pippucci T, Seri M, Lalatta F. Prenatal diagnosis of Simpson-Golabi-Behmel syndrome. Am J Med Genet A 2016; 170:3258-3264. [PMID: 27612164 DOI: 10.1002/ajmg.a.37873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/01/2016] [Indexed: 12/30/2022]
Abstract
Simpson-Golabi-Behmel syndrome (SGBS) is an overgrowth syndrome and it is usually diagnosed postnatally, on the basis of phenotype. Prenatal ultrasonography may show fetal alterations, but they are not pathognomonic and most of them are frequently detectable only from the 20th week of gestation. Nevertheless, early diagnosis is important to avoid neonatal complications and make timely and informed decisions about the pregnancy. We report on four fetuses from two unrelated families, in whom the application of whole exome sequencing and array-CGH allowed the identification of GPC3 alterations causing SGBS. The careful follow up of pregnancies and more sophisticated analysis of ultrasound findings led to the identification of early prenatal alterations, which will improve the antenatal diagnosis of SGBS. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pamela Magini
- Medical Genetics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Flavia Palombo
- Medical Genetics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Simona Boito
- Obstetric and Gynecology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Giulia Lanzoni
- Medical Genetics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Patrizia Mongelli
- Medical Genetics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Tommaso Rizzuti
- Pathology Unit, Fondazione IRCCS, Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Marco Baccarin
- Medical Genetic Laboratory, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Tommaso Pippucci
- Medical Genetics Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Marco Seri
- Medical Genetics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Faustina Lalatta
- Clinical Genetics Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milano, Italy
| |
Collapse
|
18
|
Vieira GH, Cook MM, Ferreira De Lima RL, Frigério Domingues CE, de Carvalho DR, Soares de Paiva I, Moretti-Ferreira D, Srivastava AK. Clinical and molecular heterogeneity in brazilian patients with sotos syndrome. Mol Syndromol 2015; 6:32-8. [PMID: 25852445 DOI: 10.1159/000370169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2014] [Indexed: 11/19/2022] Open
Abstract
Sotos syndrome (SoS) is a multiple anomaly, congenital disorder characterized by overgrowth, macrocephaly, distinctive facial features and variable degree of intellectual disability. Haploinsufficiency of the NSD1 gene at 5q35.3, arising from 5q35 microdeletions, point mutations, and partial gene deletions, accounts for a majority of patients with SoS. Recently, mutations and possible pathogenetic rare CNVs, both affecting a few candidate genes for overgrowth, have been reported in patients with Sotos-like overgrowth features. To estimate the frequency of NSD1 defects in the Brazilian SoS population and possibly reveal other genes implicated in the etiopathogenesis of this syndrome, we collected a cohort of 21 Brazilian patients, who fulfilled the diagnostic criteria for SoS, and analyzed the NSD1 and PTEN genes by means of multiplex ligation-dependent probe amplification and mutational screening analyses. We identified a classical NSD1 microdeletion, a novel missense mutation (p.C1593W), and 2 previously reported truncating mutations: p.R1984X and p.V1760Gfs*2. In addition, we identified a novel de novo PTEN gene mutation (p.D312Rfs*2) in a patient with a less severe presentation of SoS phenotype, which did not include pre- and postnatal overgrowth. For the first time, our study implies PTEN in the pathogenesis of SoS and further emphasizes the existence of ethno-geographical differences in NSD1 molecular alterations between patients with SoS from Europe/North America (70-93%) and those from South America (10-19%).
Collapse
Affiliation(s)
- Gustavo H Vieira
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, S.C., USA ; Department of Genetics, São Paulo State University, Botucatu, Rio de Janeiro, Brazil
| | - Melissa M Cook
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, S.C., USA
| | | | | | - Daniel R de Carvalho
- Department of Genetics, São Paulo State University, Botucatu, Rio de Janeiro, Brazil
| | - Isaias Soares de Paiva
- Department of Pediatrics, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Anand K Srivastava
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, S.C., USA ; Department of Genetics and Biochemistry, Clemson University, Clemson, S.C., USA
| |
Collapse
|
19
|
Generalized overgrowth syndromes with prenatal onset. Curr Probl Pediatr Adolesc Health Care 2015; 45:97-111. [PMID: 25861999 DOI: 10.1016/j.cppeds.2015.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/26/2015] [Indexed: 12/19/2022]
Abstract
Children with generalized overgrowth syndromes are large at birth, or have excessive postnatal growth. Many of these syndromes are associated with an increase in neoplasia. Consideration of the possibility of overgrowth syndrome in a pediatric patient who presents with increased growth parameters, variable malformations and neurodevelopmental phenotype, and distinctive features, is important for medical management, reproductive counseling, and tumor surveillance for some of the disorders. This review describes the clinical features and surveillance recommendations for the common generalized overgrowth syndromes the pediatrician may encounter. It also provides a glimpse into advances of recent years in understanding the molecular mechanisms responsible for the disrupted growth regulation in these disorders.
Collapse
|
20
|
Luscan A, Laurendeau I, Malan V, Francannet C, Odent S, Giuliano F, Lacombe D, Touraine R, Vidaud M, Pasmant E, Cormier-Daire V. Mutations in SETD2 cause a novel overgrowth condition. J Med Genet 2014; 51:512-7. [PMID: 24852293 DOI: 10.1136/jmedgenet-2014-102402] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Overgrowth conditions are a heterogeneous group of disorders characterised by increased growth and variable features, including macrocephaly, distinctive facial appearance and various degrees of learning difficulties and intellectual disability. Among them, Sotos and Weaver syndromes are clinically well defined and due to heterozygous mutations in NSD1 and EZH2, respectively. NSD1 and EZH2 are both histone-modifying enzymes. These two epigenetic writers catalyse two specific post-translational modifications of histones: methylation of histone 3 lysine 36 (H3K36) and lysine 27 (H3K27). We postulated that mutations in writers of these two chromatin marks could cause overgrowth conditions, resembling Sotos or Weaver syndromes, in patients with no NSD1 or EZH2 abnormalities. METHODS We analysed the coding sequences of 14 H3K27 methylation-related genes and eight H3K36 methylation-related genes using a targeted next-generation sequencing approach in three Sotos, 11 'Sotos-like' and two Weaver syndrome patients. RESULTS We identified two heterozygous mutations in the SETD2 gene in two patients with 'Sotos-like' syndrome: one missense p.Leu1815Trp de novo mutation in a boy and one nonsense p.Gln274* mutation in an adopted girl. SETD2 is non-redundantly responsible for H3K36 trimethylation. The two probands shared similar clinical features, including postnatal overgrowth, macrocephaly, obesity, speech delay and advanced carpal ossification. CONCLUSIONS Our results illustrate the power of targeted next-generation sequencing to identify rare disease-causing variants. We provide a compelling argument for Sotos and Sotos-like syndromes as epigenetic diseases caused by loss-of-function mutations of epigenetic writers of the H3K36 histone mark.
Collapse
Affiliation(s)
- Armelle Luscan
- EA7331, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France Service de Biochimie et de Génétique Moléculaire, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Ingrid Laurendeau
- EA7331, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France Service de Biochimie et de Génétique Moléculaire, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Valérie Malan
- Service d'Histo-Embryo-Cytogénétique, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, Paris, France
| | | | - Sylvie Odent
- Université de Rennes 1, CNRS UMR6290, Service de Génétique Clinique, CHU Hôpital Sud, Rennes, France
| | | | - Didier Lacombe
- Service de Génétique Médicale, CHU de Bordeaux et EA4576, Université de Bordeaux, Bordeaux, France
| | - Renaud Touraine
- Service de Génétique, CHU de Saint-Etienne, hôpital Nord, Saint-Etienne, France
| | - Michel Vidaud
- EA7331, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France Service de Biochimie et de Génétique Moléculaire, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Eric Pasmant
- EA7331, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France Service de Biochimie et de Génétique Moléculaire, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Valérie Cormier-Daire
- INSERM UMR_1163, Département de génétique, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
21
|
Uller W, Alomari AI. Misdiagnosis of Klippel-Trenaunay syndrome. Intern Med 2014; 53:525. [PMID: 24583451 DOI: 10.2169/internalmedicine.53.1295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Wibke Uller
- Division of Vascular and Interventional Radiology, Children's Hospital Boston and Harvard Medical School, USA
| | | |
Collapse
|
22
|
Villarreal DD, Villarreal H, Paez AM, Peppas D, Lynch J, Roeder E, Powers GC. A patient with a unique frameshift mutation in GPC3, causing Simpson-Golabi-Behmel syndrome, presenting with craniosynostosis, penoscrotal hypospadias, and a large prostatic utricle. Am J Med Genet A 2013; 161A:3121-5. [PMID: 24115482 DOI: 10.1002/ajmg.a.36086] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/22/2013] [Indexed: 11/08/2022]
Abstract
We present a Hispanic male with the clinical and molecular diagnosis of Simpson-Golabi-Behmel syndrome (SGBS). The patient was born with multiple anomalies not entirely typical of SGBS patients, including penoscrotal hypospadias, a large prostatic utricle, and left coronal craniosynostosis. In addition, he demonstrated endocrine anomalies including a low random cortisol level suspicious for adrenal insufficiency and low testosterone level. To our knowledge, this is the first report of a prostatic utricle in SGBS and the second report of craniosynostosis. The unique disease-causing mutation likely arose de novo in the mother. It is a deletion-insertion that leads to a frameshift at the p.p. S359 [corrected] residue of GPC3 and a premature stop codon after five more amino acids. p. S359 [corrected] is the same residue that is normally cleaved by the Furin convertase, although the significance of this novel mutation with respect to the patient's multiple anomalies is unknown. We present this case as the perinatal course of a patient with unique features of SGBS and a confirmed molecular diagnosis.
Collapse
Affiliation(s)
- Diana D Villarreal
- Department of Cellular and Structural Biology, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | | | | | | | | | | | | |
Collapse
|
23
|
Chung B, Hinek A, Keating S, Weksberg R, Shah V, Blaser S, Hawkins C, Chitayat D. Overgrowth with increased proliferation of fibroblast and matrix metalloproteinase activity related to reduced TIMP1: A newly recognized syndrome? Am J Med Genet A 2012; 158A:2373-81. [DOI: 10.1002/ajmg.a.35570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 06/17/2012] [Indexed: 01/11/2023]
|
24
|
Gibson W, Hood R, Zhan S, Bulman D, Fejes A, Moore R, Mungall A, Eydoux P, Babul-Hirji R, An J, Marra M, Chitayat D, Boycott K, Weaver D, Jones S, Jones SJM. Mutations in EZH2 cause Weaver syndrome. Am J Hum Genet 2012; 90:110-8. [PMID: 22177091 DOI: 10.1016/j.ajhg.2011.11.018] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 11/11/2011] [Accepted: 11/18/2011] [Indexed: 10/14/2022] Open
Abstract
We used trio-based whole-exome sequencing to analyze two families affected by Weaver syndrome, including one of the original families reported in 1974. Filtering of rare variants in the affected probands against the parental variants identified two different de novo mutations in the enhancer of zeste homolog 2 (EZH2). Sanger sequencing of EZH2 in a third classically-affected proband identified a third de novo mutation in this gene. These data show that mutations in EZH2 cause Weaver syndrome.
Collapse
|
25
|
Hypomethylation of the KCNQ1OT1 imprinting center of chromosome 11 associated to Sotos-like features. J Hum Genet 2012; 57:153-6. [PMID: 22217647 DOI: 10.1038/jhg.2011.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Küchler A, Wieczorek D. Syndrome mit dem Leitsymptom Großwuchs. MED GENET-BERLIN 2011. [DOI: 10.1007/s11825-011-0307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ZusammenfassungSyndromale Krankheitsbilder mit dem Leitsymptom Großwuchs stellen eine häufige Fragestellung in der humangenetischen und pädiatrischen Sprechstunde dar. Definiert ist ein Großwuchs durch eine Körperlänge, die mehr als 2 Standardabweichungen oberhalb des Mittelwerts liegt. Dies entspricht einer Körperlänge oberhalb der 97. Perzentile. Dargestellt werden in diesem Artikel häufigere Großwuchssyndrome, die Relevanz haben für die tägliche Arbeit des klinischen Genetikers bzw. des Pädiaters: das Marfan-, Beckwith-Wiedemann-, Sotos-, Weaver-, Simpson-Golabi-Behmel- und das Proteus-Syndrom. Es werden die jeweiligen charakteristischen klinischen Zeichen, die diagnostischen Kriterien, die molekularen Ursachen, einschließlich zugrunde liegendem Erbgang, und – falls notwendig – Vorsorgeprogramme sowie mögliche Differenzialdiagnosen dargestellt.
Collapse
Affiliation(s)
- A. Küchler
- Aff1_307 Institut für Humangenetik Universitätsklinikum Essen, Universität Duisburg-Essen Hufelandstr. 55 45122 Essen Deutschland
| | - D. Wieczorek
- Aff1_307 Institut für Humangenetik Universitätsklinikum Essen, Universität Duisburg-Essen Hufelandstr. 55 45122 Essen Deutschland
| |
Collapse
|
27
|
Fickie MR, Lapunzina P, Gentile JK, Tolkoff-Rubin N, Kroshinsky D, Galan E, Gean E, Martorell L, Romanelli V, Toral JF, Lin AE. Adults with Sotos syndrome: review of 21 adults with molecularly confirmed NSD1 alterations, including a detailed case report of the oldest person. Am J Med Genet A 2011; 155A:2105-11. [PMID: 21834047 DOI: 10.1002/ajmg.a.34156] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 05/30/2011] [Indexed: 11/09/2022]
Abstract
Sotos syndrome is a well-described multiple anomaly syndrome characterized by overgrowth, distinctive craniofacial appearance, and variable learning disabilities. The diagnosis of Sotos syndrome relied solely on these clinical criteria until haploinsufficiency of the NSD1 gene was identified as causative. We describe a 63-year-old woman with classic features and a pathogenic NSD1 mutation, who we believe to be the oldest reported person with Sotos syndrome. She is notable for the diagnosis of Sotos syndrome late in life, mild cognitive limitation, and chronic kidney disease attributed to fibromuscular dysplasia for which she recently received a transplant. She has basal cell and squamous cell carcinoma for which her lifetime of sun exposure and fair cutaneous phototype are viewed as risk factors. We also reviewed previous literature reports (n = 11) for adults with Sotos syndrome, and studied patients ascertained in the Spanish Overgrowth Syndrome Registry (n = 15). Analysis was limited to 21/27 (78%) total patients who had molecular confirmation of Sotos syndrome (15 with a mutation, 6 with a microdeletion). With a mean age of 26 years, the most common features were learning disabilities (90%), scoliosis (52%), eye problems (43%), psychiatric issues (30%), and brain imaging anomalies (28%). Learning disabilities were more severe in patients with a microdeletion than in those with a point mutation. From this small study with heterogeneous ascertainment we suggest modest adjustments to the general healthcare monitoring of individuals with Sotos syndrome. Although this series includes neoplasia in four cases, this should not be interpreted as incidence. Age-appropriate cancer surveillance should be maintained.
Collapse
Affiliation(s)
- Matthew R Fickie
- Genetics Unit, MassGeneral Hospital for Children, Harvard Medical School Genetics Training Program, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Weaver syndrome comprises pre- and postnatal overgrowth, accelerated osseous maturation, characteristic craniofacial appearance and developmental delay; it is a generally sporadic disorder, although autosomal dominant inheritance has been reported. Some of the manifestations characterize both the Weaver and Sotos syndrome, and distinction between the two is mainly by clinical examination and molecular testing. Most of the patients with Sotos syndrome have NSD1 gene deletions or mutations; however, the molecular basis of most of the Weaver syndrome patients is unknown. Patients with overgrowth syndromes have an increased frequency of tumors; the risk in Sotos syndrome patients has been estimated to be about 2-3%, with leukemia and lymphoma accounting for 44% of the malignancies. We report on a 4(1/2)-year-old girl with typical Weaver syndrome who developed acute lymphoblastic leukemia, an association not previously reported, and review the reported cases of Weaver syndrome patients who developed malignancies. Malignancy in Weaver syndrome has been reported previously in six patients. While searching the literature for all reported cases with Weaver syndrome and counting the cases with malignancy, we found that the frequency of tumors or hematologic malignancy was 10.9%. This is likely to be an overestimate, biased by failure to report cases without tumors and by over-reporting cases with this rare association. While the presence of acute lymphoblastic leukemia in our patient might be incidental, we cannot exclude a possible causative association between Weaver syndrome and hematologic malignancy.
Collapse
Affiliation(s)
- Lina Basel-Vanagaite
- Schneider Children's Medical Center of Israel and Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel.
| |
Collapse
|
29
|
Array-based comparative genomic hybridization identifies a high frequency of copy number variations in patients with syndromic overgrowth. Eur J Hum Genet 2009; 18:227-32. [PMID: 19844265 DOI: 10.1038/ejhg.2009.162] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Overgrowth syndromes are a heterogeneous group of conditions including endocrine hormone disorders, several genetic syndromes and other disorders with unknown etiopathogenesis. Among genetic causes, chromosomal deletions and duplications such as dup(4)(p16.3), dup(15)(q26qter), del(9)(q22.32q22.33), del(22)(q13) and del(5)(q35) have been identified in patients with overgrowth. Most of them, however, remain undetectable using banding karyotype analysis. In this study, we report on the analysis using a 1-Mb resolution array-based comparative genomic hybridization (CGH) of 93 patients with either a recognizable overgrowth condition (ie, Sotos syndrome or Weaver syndrome) or an unclassified overgrowth syndrome. Five clinically relevant imbalances (three duplications and two deletions) were identified and the pathogenicity of two additional anomalies (one duplication and one deletion) is discussed. Altered segments ranged in size from 0.32 to 18.2 Mb, and no recurrent abnormality was identified. These results show that array-CGH provides a high diagnostic yield in patients with overgrowth syndromes and point to novel chromosomal regions associated with these conditions. Although chromosomal deletions are usually associated with growth retardation, we found that the majority of the imbalances detected in our patients are duplications. Besides their importance for diagnosis and genetic counseling, our results may allow to delineate new contiguous gene syndromes associated with overgrowth, pointing to new genes, the deregulation of which may be responsible for growth defect.
Collapse
|
30
|
Abstract
Large (>90%) for gestational age (LGA) fetuses are usually identified incidentally. Detection of the LGA fetus should first prompt the provider to rule out incorrect dates and maternal diabetes. Once this is done, consideration should be given to certain overgrowth syndromes, especially if anomalies are present. The overgrowth syndromes have significant clinical and molecular overlap, and are associated with developmental delay, tumors, and other anomalies. Although genetic causes of overgrowth are considered postnatally, they are infrequently diagnosed prenatally. Here, we review prenatal sonographic findings in fetal overgrowth syndromes, including Pallister-Killian, Beckwith-Wiedemann, Sotos, Perlman, and Simpson-Golabi-Behmel. We also discuss prenatal diagnosis options and recurrence risks.
Collapse
Affiliation(s)
- Neeta Vora
- Division of Genetics, Department of Pediatrics, Floating Hospital for Children and Tufts Medical Center, Boston, MA, 02111
- Division of Maternal Fetal Medicine, Department of Obstetrics, Floating Hospital for Children and Tufts Medical Center, Boston, MA, 02111
| | - Diana W. Bianchi
- Division of Genetics, Department of Pediatrics, Floating Hospital for Children and Tufts Medical Center, Boston, MA, 02111
- Division of Maternal Fetal Medicine, Department of Obstetrics, Floating Hospital for Children and Tufts Medical Center, Boston, MA, 02111
| |
Collapse
|
31
|
A clinical study of Sotos syndrome patients with review of the literature. Pediatr Neurol 2009; 40:357-64. [PMID: 19380072 DOI: 10.1016/j.pediatrneurol.2008.11.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 11/19/2008] [Accepted: 11/25/2008] [Indexed: 11/20/2022]
Abstract
Sotos syndrome is characterized by tall stature, advanced bone age, typical facial abnormalities, and developmental delay. The associated gene is NSD1. The study involved 22 patients who fulfilled the clinical criteria. Phenotypic characteristics, central nervous system findings, and cardiovascular and urinary tract abnormalities were evaluated. Meta-analysis on the incidence of cardinal clinical manifestations from the literature was also performed. Macrocephaly was present in all patients. Advanced bone age was noted in 14 of 22 patients (63%), and its incidence presented significant statistical difference in the meta-analysis of previous studies. Some patients had serious clinical manifestations, such as congenital heart defects, dysplastic kidneys, psychosis, and leukemia. Clinical and laboratory examinations should be performed to prevent and manage any unusual medical aspect of the syndrome. Facial gestalt and macrocephaly, rather than advanced bone age, are the strongest indications for clinical diagnosis.
Collapse
|
32
|
Alomari AI. A truly unusual overgrowth syndrome: an alternative diagnosis to Klippel-Trénaunay-Weber syndrome. Intern Med 2009; 48:493-4; author reply 495. [PMID: 19293555 DOI: 10.2169/internalmedicine.48.1821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
33
|
Menezes AH, Vogel TW. Specific entities affecting the craniocervical region: syndromes affecting the craniocervical junction. Childs Nerv Syst 2008; 24:1155-63. [PMID: 18369644 DOI: 10.1007/s00381-008-0608-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The craniocervical junction is a vital component in understanding the function of the human central nervous system. It is the threshold for major pathways affecting both brain and spinal cord function, and these structures are intricately housed in a network of bone, ligaments, and soft tissues. Abnormal development of any of these components may lead to altered structure, and therefore, altered function in the central nervous system. MATERIALS AND METHODS We herein describe a set of genetic syndromes that commonly affect the craniovertebral junction and offer clinical examples from more than 6,000 patients who have been treated for these disorders. DISCUSSION The syndromes described include Chiari type I malformation, Conradi syndrome, Goldenhar syndrome, Klippel-Feil syndrome, Larsen syndrome, Morquio syndrome, Pierre-Robin syndrome, spondyloepiphyseal dysplasia congenital and Weaver syndrome. The genetic mechanisms responsible for these disorders may offer unique insight into the developmental pathways and patterning in the musculoskeletal and cranial systems and may, ultimately, guide future diagnosis and treatment.
Collapse
Affiliation(s)
- Arnold H Menezes
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, 1824 JPP, Iowa, IA 52242, USA.
| | | |
Collapse
|
34
|
Philippe A, Boddaert N, Vaivre-Douret L, Robel L, Danon-Boileau L, Malan V, de Blois MC, Heron D, Colleaux L, Golse B, Zilbovicius M, Munnich A. Neurobehavioral profile and brain imaging study of the 22q13.3 deletion syndrome in childhood. Pediatrics 2008; 122:e376-82. [PMID: 18625665 DOI: 10.1542/peds.2007-2584] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The 22q13.3 deletion syndrome (Online Mendelian Inheritance in Man No. 606232) is a neurodevelopmental disorder that includes hypotonia, severely impaired development of speech and language, autistic-like behavior, and minor dysmorphic features. Although the number of reported cases is increasing, the 22q13.3 deletion remains underdiagnosed because of failure in recognizing the clinical phenotype and detecting the 22qter deletion by routine chromosome analyses. Our goal is to contribute to the description of the neurobehavioral phenotype and brain abnormalities of this microdeletional syndrome. METHODS We assessed neuromotor, sensory, language, communication, and social development and performed cerebral MRI and study of regional cerebral blood flow measured by positron emission tomography in 8 children carrying the 22q13.3 deletion. RESULTS Despite variability in expression and severity, the children shared a common developmental profile characterized by hypotonia, sleep disorders, and poor response to their environment in early infancy; expressive language deficit contrasting with emergence of social reciprocity from ages approximately 3 to 5 years; sensory processing dysfunction; and neuromotor disorders. Brain MRI findings were normal or showed a thin or morphologically atypical corpus callosum. Positron emission tomography study detected a localized dysfunction of the left temporal polar lobe and amygdala hypoperfusion. CONCLUSIONS The developmental course of the 22q13.3 deletion syndrome belongs to pervasive developmental disorders but is distinct from autism. An improved description of the natural history of this syndrome should help in recognizing this largely underdiagnosed condition.
Collapse
Affiliation(s)
- Anne Philippe
- National Institute of Health and Medical Research and Department of Genetics, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Sotos syndrome is an overgrowth condition characterized by cardinal features including excessive growth during childhood, macrocephaly, distinctive facial gestalt and various degrees of learning difficulty, and associated with variable minor features. The exact prevalence remains unknown but hundreds of cases have been reported. The diagnosis is usually suspected after birth because of excessive height and occipitofrontal circumference (OFC), advanced bone age, neonatal complications including hypotonia and feeding difficulties, and facial gestalt. Other inconstant clinical abnormalities include scoliosis, cardiac and genitourinary anomalies, seizures and brisk deep tendon reflexes. Variable delays in cognitive and motor development are also observed. The syndrome may also be associated with an increased risk of tumors. Mutations and deletions of the NSD1 gene (located at chromosome 5q35 and coding for a histone methyltransferase implicated in transcriptional regulation) are responsible for more than 75% of cases. FISH analysis, MLPA or multiplex quantitative PCR allow the detection of total/partial NSD1 deletions, and direct sequencing allows detection of NSD1 mutations. The large majority of NSD1 abnormalities occur de novo and there are very few familial cases. Although most cases are sporadic, several reports of autosomal dominant inheritance have been described. Germline mosaicism has never been reported and the recurrence risk for normal parents is very low (<1%). The main differential diagnoses are Weaver syndrome, Beckwith-Wiedeman syndrome, Fragile X syndrome, Simpson-Golabi-Behmel syndrome and 22qter deletion syndrome. Management is multidisciplinary. During the neonatal period, therapies are mostly symptomatic, including phototherapy in case of jaundice, treatment of the feeding difficulties and gastroesophageal reflux, and detection and treatment of hypoglycemia. General pediatric follow-up is important during the first years of life to allow detection and management of clinical complications such as scoliosis and febrile seizures. An adequate psychological and educational program with speech therapy and motor stimulation plays an important role in the global development of the patients. Final body height is difficult to predict but growth tends to normalize after puberty.
Collapse
Affiliation(s)
- Geneviève Baujat
- Department of Medical Genetic, Hospital Necker-Enfants Malades, 149 rue de Sèvres, 75743 Paris Cedex 15, France
| | - Valérie Cormier-Daire
- Department of Medical Genetic, Hospital Necker-Enfants Malades, 149 rue de Sèvres, 75743 Paris Cedex 15, France
| |
Collapse
|
36
|
van Haelst MM, Hoogeboom JJM, Baujat G, Brüggenwirth HT, Van de Laar I, Coleman K, Rahman N, Niermeijer MF, Drop SLS, Scambler PJ. Familial gigantism caused by an NSD1 mutation. Am J Med Genet A 2005; 139:40-4. [PMID: 16222665 DOI: 10.1002/ajmg.a.30973] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A three-generation family with autosomal dominant segregation of a novel NSD1 mutation (6605G --> A, resulting in Cys2202Tyr) is reported. Haploinsufficiency of NSD1 has been identified as the major cause of Sotos syndrome. The overgrowth condition (MIM 117550) is characterized by facial anomalies, macrocephaly, advanced bone age, and learning disabilities. Manifestations in the present family include dramatically increased height, weight, and head circumference together with a long face, large mandible, and large ears, but mental deficiency was absent.
Collapse
Affiliation(s)
- Mieke M van Haelst
- Department of Clinical Genetics, Erasmus Medical Centre Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|