1
|
Misceo D, Senaratne LDS, Mero IL, Sundaram AYM, Bjørnstad PM, Szczałuba K, Gasperowicz P, Kamien B, Nedregaard B, Holmgren A, Strømme P, Frengen E. Novel Loss of Function Variants in CENPF Including a Large Intragenic Deletion in Patients with Strømme Syndrome. Genes (Basel) 2023; 14:1985. [PMID: 38002928 PMCID: PMC10671177 DOI: 10.3390/genes14111985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Strømme syndrome is an ultra-rare primary ciliopathy with clinical variability. The syndrome is caused by bi-allelic variants in CENPF, a protein with key roles in both chromosomal segregation and ciliogenesis. We report three unrelated patients with Strømme syndrome and, using high-throughput sequencing approaches, we identified novel pathogenic variants in CENPF, including one structural variant, giving a genetic diagnosis to the patients. Patient 1 was a premature baby who died at 26 days with congenital malformations affecting many organs including the brain, eyes, and intestine. She was homozygous for a donor splice variant in CENPF, NM_016343.3:c.1068+1G>A, causing skipping of exon 7, resulting in a frameshift. Patient 2 was a female with intestinal atresia, microcephaly, and a Peters anomaly. She had normal developmental milestones at the age of 7 years. She is compound heterozygous for CENPF NM_016343.3:c.5920dup and c.8991del, both frameshift. Patient 3 was a male with anomalies of the brain, eye, intestine, and kidneys. He was compound heterozygous for CENPF p.(Glu298Ter), and a 5323 bp deletion covering exon 1. CENPF exon 1 is flanked by repetitive sequences that may represent a site of a recurrent structural variation, which should be a focus in patients with Strømme syndrome of unknown etiology.
Collapse
Affiliation(s)
- Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway; (D.M.); (L.D.S.S.); (I.-L.M.); (A.Y.M.S.); (A.H.)
- Faculty of Medicine, University of Oslo, 0450 Oslo, Norway;
| | - Lokuliyanage Dona Samudita Senaratne
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway; (D.M.); (L.D.S.S.); (I.-L.M.); (A.Y.M.S.); (A.H.)
- Faculty of Medicine, University of Oslo, 0450 Oslo, Norway;
| | - Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway; (D.M.); (L.D.S.S.); (I.-L.M.); (A.Y.M.S.); (A.H.)
| | - Arvind Y. M. Sundaram
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway; (D.M.); (L.D.S.S.); (I.-L.M.); (A.Y.M.S.); (A.H.)
- Faculty of Medicine, University of Oslo, 0450 Oslo, Norway;
| | - Pål Marius Bjørnstad
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway; (D.M.); (L.D.S.S.); (I.-L.M.); (A.Y.M.S.); (A.H.)
- Faculty of Medicine, University of Oslo, 0450 Oslo, Norway;
| | - Krzysztof Szczałuba
- Department of Medical Genetics, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warszawa, Poland; (K.S.)
| | - Piotr Gasperowicz
- Department of Medical Genetics, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warszawa, Poland; (K.S.)
| | - Benjamin Kamien
- Genetic Services of Western Australia, King Edward Memorial Hospital, 374 Bagot Rd, Subiaco, WA 6008, Australia;
| | - Bård Nedregaard
- Department of Radiology and Nuclear Medicine, Section of Neuroradiology, Oslo University Hospital, 0450 Oslo, Norway;
| | - Asbjørn Holmgren
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway; (D.M.); (L.D.S.S.); (I.-L.M.); (A.Y.M.S.); (A.H.)
- Faculty of Medicine, University of Oslo, 0450 Oslo, Norway;
| | - Petter Strømme
- Faculty of Medicine, University of Oslo, 0450 Oslo, Norway;
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, 0450 Oslo, Norway
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway; (D.M.); (L.D.S.S.); (I.-L.M.); (A.Y.M.S.); (A.H.)
- Faculty of Medicine, University of Oslo, 0450 Oslo, Norway;
| |
Collapse
|
2
|
Primary Cilia Influence Progenitor Function during Cortical Development. Cells 2022; 11:cells11182895. [PMID: 36139475 PMCID: PMC9496791 DOI: 10.3390/cells11182895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Corticogenesis is an intricate process controlled temporally and spatially by many intrinsic and extrinsic factors. Alterations during this important process can lead to severe cortical malformations. Apical neuronal progenitors are essential cells able to self-amplify and also generate basal progenitors and/or neurons. Apical radial glia (aRG) are neuronal progenitors with a unique morphology. They have a long basal process acting as a support for neuronal migration to the cortical plate and a short apical process directed towards the ventricle from which protrudes a primary cilium. This antenna-like structure allows aRG to sense cues from the embryonic cerebrospinal fluid (eCSF) helping to maintain cell shape and to influence several key functions of aRG such as proliferation and differentiation. Centrosomes, major microtubule organising centres, are crucial for cilia formation. In this review, we focus on how primary cilia influence aRG function during cortical development and pathologies which may arise due to defects in this structure. Reporting and cataloguing a number of ciliary mutant models, we discuss the importance of primary cilia for aRG function and cortical development.
Collapse
|
3
|
Cappuccio G, Brillante S, Tammaro R, Pinelli M, De Bernardi ML, Gensini MG, Bijlsma EK, Koopmann TT, Hoffer MJV, McDonald K, Hendon LG, Douzgou S, Deshpande C, D'Arrigo S, Torella A, Nigro V, Franco B, Brunetti-Pierri N. Biallelic variants in CENPF causing a phenotype distinct from Strømme syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:102-108. [PMID: 35488810 PMCID: PMC9322429 DOI: 10.1002/ajmg.c.31973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/20/2022]
Abstract
Biallelic loss-of-function (LoF) variants in CENPF gene are responsible for Strømme syndrome, a condition presenting with intestinal atresia, anterior ocular chamber anomalies, and microcephaly. Through an international collaboration, four individuals (three males and one female) carrying CENPF biallelic variants, including two missense variants in homozygous state and four LoF variants, were identified by exome sequencing. All individuals had variable degree of developmental delay/intellectual disability and microcephaly (ranging from -2.9 SDS to -5.6 SDS) and a recognizable pattern of dysmorphic facial features including inverted-V shaped interrupted eyebrows, epicanthal fold, depressed nasal bridge, and pointed chin. Although one of the cases had duodenal atresia, all four individuals did not have the combination of internal organ malformations of Strømme syndrome (intestinal atresia and anterior eye segment abnormalities). Immunofluorescence analysis on skin fibroblasts on one of the four cases with the antibody for ARL13B that decorates primary cilia revealed shorter primary cilia that are consistent with a ciliary defect. This case-series of individuals with biallelic CENPF variants suggests the spectrum of clinical manifestations of the disorder that may be related to CENPF variants is broad and can include phenotypes lacking the cardinal features of Strømme syndrome.
Collapse
Affiliation(s)
- Gerarda Cappuccio
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Naples, Italy
| | | | | | - Michele Pinelli
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Naples, Italy
| | | | - Maria Grazia Gensini
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tamara T Koopmann
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariette J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kimberly McDonald
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Laura G Hendon
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Sofia Douzgou
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.,Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK
| | | | - Stefano D'Arrigo
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Annalaura Torella
- Telethon Institute of Genetics and Medicine, Naples, Italy.,Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine, Naples, Italy.,Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Brunella Franco
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Naples, Italy.,Scuola Superiore Meridionale, School for Advanced Studies, Naples, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Naples, Italy.,Scuola Superiore Meridionale, School for Advanced Studies, Naples, Italy
| |
Collapse
|