1
|
Shrinidhi A, Perrin CL. Nucleophilic Addition of Enolates to 1,4-Dehydrobenzene Diradicals Derived from Enediynes: Synthesis of Functionalized Aromatics. ACS OMEGA 2022; 7:22930-22937. [PMID: 35811883 PMCID: PMC9260944 DOI: 10.1021/acsomega.2c02916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Alkylation of aromatics and formation of a new C-C bond is usually achieved by the electrophilic attack of an activated carbon species on an electron-rich aromatic ring. Herein, we report an alternative method for alkylation of aromatics via nucleophilic addition of enolates of active methylene compounds to 1,4-dehydrobenzene diradicals derived from enediynes cyclodec-1,5-diyne-3-ene, benzo[3,4]-cyclodec-1,5-diyne-3-ene, and cyclohexeno[3,4]-cyclodec-1,5-diyne-3-ene. The benzo-substituted enediyne produces slightly higher yields of alkylation products than do the other two enediynes, but the differences are not substantial. The reaction produces a new C-C bonded aromatic alkylation product, which allows the construction of complex polyfunctional structures in a few steps. Moreover, this reaction provides solely C-arylated products, and no O-arylation products were observed.
Collapse
|
2
|
Zhang M, Ma H, Li B, Sun K, Lu H, Wang W, Cheng X, Li X, Ding Y, Hu A. Nucleophilic Addition to Diradicals Derived From Cycloaromatization of Maleimide‐Based Enediynes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mengsi Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Hailong Ma
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Baojun Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Ke Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Haotian Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Wenbo Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Xiaoyu Cheng
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Xiaoxuan Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
3
|
Lu H, Zhang M, Li B, Ma H, Wang W, Ding Y, Li X, Hu A. Experimental and Computational Study on the Reaction Pathways of Diradical Intermediates Formed from Myers‐Saito Cyclization of Maleimide‐Based Enediynes. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Haotian Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Mengsi Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Baojun Li
- Shanghai Key Laboratory of Advanced Polymeric Materials School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Hailong Ma
- Shanghai Key Laboratory of Advanced Polymeric Materials School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Wenbo Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Xinxin Li
- Shanghai Key Laboratory of Advanced Polymeric Materials School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
4
|
Danilkina NA, D'yachenko AS, Govdi AI, Khlebnikov AF, Kornyakov IV, Bräse S, Balova IA. Intramolecular Nicholas Reactions in the Synthesis of Heteroenediynes Fused to Indole, Triazole, and Isocoumarin. J Org Chem 2020; 85:9001-9014. [PMID: 32506914 DOI: 10.1021/acs.joc.0c00930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The applicability of an intramolecular Nicholas reaction for the preparation of 10-membered O- and N-enediynes fused to indole, 1,2,3-triazole, and isocoumarin was investigated. The general approach to acyclic enediyne precursors fused to heterocycles includes inter- and intramolecular buta-1,3-diyne cyclizations with the formation of iodoethynylheterocycles, followed by Sonogashira coupling. The nature of both a heterocycle and a nucleophilic group affects the possibility of a 10-membered ring closure by the Nicholas reaction. Among oxacycles, an isocoumarin-fused enediyne was obtained. In the case of O-enediyne annulated with indole, instead of the formation of a 10-membered cycle, BF3-promoted addition of an OH-group to the proximal triple bond at the C3 position afforded dihydrofuryl-substituted indole. For 1,2,3-triazole-fused analogues, using NH-Ts as a nucleophilic functional group allowed obtaining 10-membered azaenediyne, while the substrate with a hydroxyl group gave only traces of the desired 10-membered oxacycle. An improved method for the deprotection of Co-complexes of cyclic enediynes using tetrabutylammonium fluoride in an acetone/water mixture and the investigation of the 10-membered enediynes' reactivity in the Bergman cyclization are also reported. In the solid state, all synthesized iodoethynylheterocycles were found to be involved in halogen bond (XB) formation with either O or N atoms as XB acceptors.
Collapse
Affiliation(s)
- Natalia A Danilkina
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Alexander S D'yachenko
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Anastasia I Govdi
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Alexander F Khlebnikov
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Ilya V Kornyakov
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.,Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Irina A Balova
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| |
Collapse
|
5
|
Das E, Basak A. Regioselective Synthesis of Benzo-Fused Tetrahydroisoquinoline-Based Biaryls through a Tandem One-Pot Halogenation of p-Benzynes from Enediynes and Suzuki-Miyaura Coupling. J Org Chem 2020; 85:2697-2703. [PMID: 31880452 DOI: 10.1021/acs.joc.9b02874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A regioselective halogenation of p-benzyne derived from a nonaromatic enediyne core via Bergman cyclization and Suzuki-Miyaura coupling of the resulting haloarene in one-pot is disclosed. For the one-pot protocol to work, the reaction conditions were modified compared to an earlier reported procedure ( J. Org. Chem. 2019 , 84 , 2911 - 2921 ) by reducing the amount of lithium iodide and exclusion of pivalic acid. Under these modified conditions, the products, benzo-fused tetrahydroisoquinoline-based biaryl derivatives were obtained in overall high to excellent yields (71-90%).
Collapse
|
6
|
Das E, Basak S, Anoop A, Chand S, Basak A. How To Achieve High Regioselectivity in Barrier-less Nucleophilic Addition to p-Benzynes Generated via Bergman Cyclization of Unsymmetrical Cyclic Azaenediyne? J Org Chem 2019; 84:2911-2921. [DOI: 10.1021/acs.joc.9b00060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eshani Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
| | - Shyam Basak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
| | - Santanu Chand
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
| | - Amit Basak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
| |
Collapse
|