1
|
Qin H, Wei GL, Xie WG, Mao XH, Wang FW, Bao MH, Zheng XW, Zhang YW, Huang P. Direct C-H fluorination/heteroarylation of oxindoles with quinoxalin-2(1 H)-ones using Selectfluor. Org Biomol Chem 2025. [PMID: 40351117 DOI: 10.1039/d5ob00427f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Herein, we present an efficient and feasible strategy for direct C-H fluorination and heteroarylation of oxindoles on the C-3 position having a C(sp3)-H bond with quinoxalin-2(1H)-ones based on a radical coupling reaction via Selectfluor, a bifunctional reagent, as both the oxidant and fluorine source. This methodology provides a potential protocol to obtain 3-heteroaryl 3-fluorooxindoles in medium to excellent yields.
Collapse
Affiliation(s)
- Hui Qin
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| | - Guo-Liang Wei
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| | - Wen-Geng Xie
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiao-Hong Mao
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| | - Fu-Wei Wang
- Department of Oncology and Cancer Biotherapy Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Mei-Hua Bao
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, 410219, Changsha, China
| | - Xiao-Wei Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| | - Yi-Wen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
2
|
Lamba M, Singh PR, Tanmay, Goswami A. Metal-Free Switchable Chemo- and Regioselective Alkylation of Oxindoles Using Secondary Alcohols. J Org Chem 2024; 89:11244-11260. [PMID: 39106447 DOI: 10.1021/acs.joc.4c00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
In this study, we have disclosed N-alkylation and C-alkylation reactions of 2-oxindoles with secondary alcohols. Interestingly, these chemoselective reactions are tunable by changing the reaction conditions. Utilization of protic solvent and Brønsted acid catalyst afforded C-alkylation, whereas, aprotic solvent and Lewis acid catalyst afforded N-alkylation of 2-oxindoles in good to excellent yields. Regioselectivity is achieved by protecting the N-center of the oxindole and C5 alkylated product is furnished exclusively. This protocol is notable because it demonstrates functionalization at the C7 position of oxindole without the need for any directing group at the N-center. Further, a new protocol has been reported for C-H oxygenation at the benzylic position of one of the C5 alkylated derivative.
Collapse
Affiliation(s)
- Manisha Lamba
- Department of Chemistry, SS Bhatnagar Block, Indian Institute of Technology Ropar, Punjab140001, India
| | - Prasoon Raj Singh
- Department of Chemistry, SS Bhatnagar Block, Indian Institute of Technology Ropar, Punjab140001, India
| | - Tanmay
- Department of Chemistry, SS Bhatnagar Block, Indian Institute of Technology Ropar, Punjab140001, India
| | - Avijit Goswami
- Department of Chemistry, SS Bhatnagar Block, Indian Institute of Technology Ropar, Punjab140001, India
| |
Collapse
|
3
|
Singh PR, Lamba M, Goswami A. Copper-Catalyzed Chemoselective O-Arylation of Oxindoles: Access to Cyclic Aryl Carboxyimidates. J Org Chem 2024; 89:2926-2938. [PMID: 38354326 DOI: 10.1021/acs.joc.3c02341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
We have developed a highly efficient base- and additive-free chemoselective CuO-catalyzed strategy for the O-arylation of 2-oxindoles to synthesize 2-phenoxy-3H-indole and 2-phenoxy-1H-indole derivatives in the presence of diaryl iodonium salts. This method offers a variety of O-arylated oxindoles in good to excellent yields under relatively milder reaction conditions. Furthermore, this methodology was extended for the O-arylation of 2-pyridinone and isoindoline-1-one derivatives as well.
Collapse
Affiliation(s)
- Prasoon Raj Singh
- Department of Chemistry, SS Bhatnagar Block, Indian Institute of Technology, Ropar 140001, Punjab, India
| | - Manisha Lamba
- Department of Chemistry, SS Bhatnagar Block, Indian Institute of Technology, Ropar 140001, Punjab, India
| | - Avijit Goswami
- Department of Chemistry, SS Bhatnagar Block, Indian Institute of Technology, Ropar 140001, Punjab, India
| |
Collapse
|
4
|
Qin H, Wei G, Lou Y, Zheng X, Bao M, Zhang Y, Huang P. K 2S 2O 8-mediated direct C-H heteroarylation/hydroxylation of indolin-2-ones with quinoxalin-2(1 H)-ones. Org Biomol Chem 2024; 22:279-283. [PMID: 38053489 DOI: 10.1039/d3ob01792c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Herein, a K2S2O8-mediated direct heteroarylation and hydroxylation reaction between quinoxalin-2(1H)-ones with a C(sp2)-H bond and indolin-2-ones with a C(sp3)-H bond via an oxidative cross-coupling reaction has been reported. We have successfully established a feasible and concise reaction system that represents the first example of free-radical-promoted heteroarylation and hydroxylation reaction on the C-3 position of oxindole. A series of 3-substituted 3-hydroxyoxindoles are obtained in 0-83% yield using this methodology.
Collapse
Affiliation(s)
- Hui Qin
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China
| | - Guoliang Wei
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| | - Yutao Lou
- College of pharmacy, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaowei Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China
| | - Meihua Bao
- Academician Workstation, School of Stomatology, Changsha Medical University, Changsha, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China
| |
Collapse
|
5
|
Sugawara M, Sawamura M, Akakabe M, Ramadoss B, Sohtome Y, Sodeoka M. Pd-catalyzed Aerobic Cross-Dehydrogenative Coupling of Catechols with 2-Oxindoles and Benzofuranones: Reactivity Difference Between Monomer and Dimer. Chem Asian J 2022; 17:e202200807. [PMID: 36062560 PMCID: PMC9825984 DOI: 10.1002/asia.202200807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/05/2022] [Indexed: 01/11/2023]
Abstract
Persistent radicals, which are generated from 2-oxindole or benzofuranone dimers, are useful tools for designing the radical-based cross-coupling reaction to provide molecules containing a quaternary carbon. The persistent radical is accessible from both the dimer and monomer; however, the reactivity difference between these substrates for the oxidative cross-coupling reaction is not fully understood, most likely because of the mechanistic complexity. Here, we present details of an aerobic cross-dehydrogenative coupling (CDC) reaction using various monomers and catechols. UV-Vis analysis and mechanistic control experiments showed that the monomer is less reactive than the dimer under aerobic conditions. Our Pd(II)-BINAP-μ-hydroxo complex significantly improved the reactivity of the monomers for the aerobic CDC reaction with catechols, yielding results comparable to those of the corresponding dimer. The procedure, which enables the generation of the persistent radical in situ, is particularly useful when employing the monomer that is not readily converted to the corresponding dimer.
Collapse
Affiliation(s)
- Masumi Sugawara
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2-1 HirosawaWakoSaitamaJapan
| | - Miki Sawamura
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2-1 HirosawaWakoSaitamaJapan,Tokyo Medical and Dental UniversityTokyo113-8510Japan
| | - Mai Akakabe
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2-1 HirosawaWakoSaitamaJapan,Catalysis and Integrated Research Group RIKEN Center for Sustainable Resource Science
| | - Boobalan Ramadoss
- Catalysis and Integrated Research Group RIKEN Center for Sustainable Resource Science
| | - Yoshihiro Sohtome
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2-1 HirosawaWakoSaitamaJapan,Catalysis and Integrated Research Group RIKEN Center for Sustainable Resource Science
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2-1 HirosawaWakoSaitamaJapan,Catalysis and Integrated Research Group RIKEN Center for Sustainable Resource Science,Tokyo Medical and Dental UniversityTokyo113-8510Japan
| |
Collapse
|
6
|
Xue Y, Guo Z, Chen X, Li J, Zou D, Wu Y, Wu Y. Copper-promoted difunctionalization of unactivated alkenes with silanes. Org Biomol Chem 2022; 20:989-994. [PMID: 35018960 DOI: 10.1039/d1ob02318g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An efficient copper-catalyzed cascade difunctionalization of N-allyl anilines toward the synthesis of silylated indolines using commercially available silanes has been reported. This strategy provides a new avenue for the synthesis of a diverse array of indolines in reasonable yields. Preliminary mechanistic investigations indicate that the reaction probably proceeds via a radical pathway with unactivated alkenes as radical acceptors and simple silanes as radical precursors. This protocol is distinguished by its atom economy, broad substrate scope and readily available starting materials.
Collapse
Affiliation(s)
- Yingying Xue
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Zhuangzhuang Guo
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Xiaoyu Chen
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Jingya Li
- TetranovBiopharm, LLC., Zhengzhou, 450052, People's Republic of China
| | - Dapeng Zou
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Yangjie Wu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Yusheng Wu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China. .,Tetranov International, Inc., 100 Jersey Avenue, Suite A340, New Brunswick, NJ 08901, USA.
| |
Collapse
|
7
|
Xiaojing T, Zhenzhen F, Si J, Zhiwei L, Jiangsheng L, Yuefei Z, Cuihong L, Weidong L. Metal-Free Synthesis of Benzimidazo[1,2- c]quinazolines from N-Cyanobenzimidazoles via Double C—H Functionalizations. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Sohtome Y, Kanomata K, Sodeoka M. Cross-Coupling Reactions of Persistent Tertiary Carbon Radicals. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yoshihiro Sohtome
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kyohei Kanomata
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
9
|
Yilmaz O, Dengiz C, Emmert MH. Iron-Catalyzed α-C-H Cyanation of Simple and Complex Tertiary Amines. J Org Chem 2021; 86:2489-2498. [PMID: 33464080 DOI: 10.1021/acs.joc.0c02642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This manuscript details the development of a general and mild protocol for the α-C-H cyanation of tertiary amines and its application in late-stage functionalization. Suitable substrates include tertiary aliphatic, benzylic, and aniline-type substrates and complex substrates. Functional groups tolerated under the reaction conditions include various heterocycles and ketones, amides, olefins, and alkynes. This broad substrate scope is remarkable, as comparable reaction protocols for α-C-H cyanation frequently occur via free radical mechanisms and are thus fundamentally limited in their functional group tolerance. In contrast, the presented catalyst system tolerates functional groups that typically react with free radicals, suggesting an alternative reaction pathway. All components of the described catalyst system are readily available, allowing implementation of the presented methodology without the need for lengthy catalyst synthesis.
Collapse
Affiliation(s)
- Ozgur Yilmaz
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States.,Department of Chemistry, Faculty of Arts and Sciences, Mersin University, 33343 Mersin, Turkey
| | - Cagatay Dengiz
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Marion H Emmert
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States.,Process Research & Development, MRL, Merck & Co. Inc, 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| |
Collapse
|
10
|
Teja C, Khan FRN. Radical Transformations towards the Synthesis of Quinoline: A Review. Chem Asian J 2020; 15:4153-4167. [PMID: 33135361 DOI: 10.1002/asia.202001156] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/25/2020] [Indexed: 12/21/2022]
Abstract
Quinoline is considered one of the most ubiquitous heterocycles due to its engaging biological activities and synthetic utility over organic transformations. Over the past few decades, numerous reports have been documented in the synthesis of quinolines. The classical methods including, Skraup, Friedlander, Doebner-von-Miller, Conrad-Limpach, Pfitzinger quinoline synthesis, and so forth, these are the well-known methods to construct principal quinoline scaffold with several advantages and limitations. Recently, radical insertion or catalyzed reactions have emerged as a powerful and efficient tool to construct heterocycles with high atom efficiency and step economy. In this concern, this minireview mainly focused on the developments of Quinoline synthesis via radical reactions. In addition, a brief description of the preparation procedure, reactivity, and mechanisms is also included, where as possible. Respectively, the synthesis of quinolines is classified and summarized based on its reactivity, so it will help the researchers to grab the information in this exploration area, as Quinolines are promising pharmacophores.
Collapse
Affiliation(s)
- Chitrala Teja
- Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| | - Fazlur Rahman Nawaz Khan
- Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| |
Collapse
|
11
|
Sugawara M, Ohnishi R, Ezawa T, Akakabe M, Sawamura M, Hojo D, Hashizume D, Sohtome Y, Sodeoka M. Regiodivergent Oxidative Cross-Coupling of Catechols with Persistent tert-Carbon Radicals. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Masumi Sugawara
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Rikako Ohnishi
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Tetsuya Ezawa
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mai Akakabe
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Miki Sawamura
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daiki Hojo
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Sohtome
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
12
|
Patel OPS, Nandwana NK, Legoabe LJ, Das BC, Kumar A. Recent Advances in Radical C−H Bond Functionalization of Imidazoheterocycles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000633] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Om P. S. Patel
- Department of Chemistry Birla Institute of Technology and Science Pilani Pilani Campus 333031 Rajasthan India
- Centre of Excellence for Pharmaceutical Sciences North-West University Private Bag X6001 Potchefstroom 2520 South Africa
| | - Nitesh K. Nandwana
- Department of Chemistry Birla Institute of Technology and Science Pilani Pilani Campus 333031 Rajasthan India
- Departments of Medicine and Pharmacological Sciences Icahn School of Medicine at Mount Sinai New York, NY 10029 USA
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences North-West University Private Bag X6001 Potchefstroom 2520 South Africa
| | - Bhaskar C. Das
- Departments of Medicine and Pharmacological Sciences Icahn School of Medicine at Mount Sinai New York, NY 10029 USA
| | - Anil Kumar
- Department of Chemistry Birla Institute of Technology and Science Pilani Pilani Campus 333031 Rajasthan India
| |
Collapse
|
13
|
Wu H, Qiu C, Zhang Z, Zhang B, Zhang S, Xu Y, Zhou H, Su C, Loh KP. Graphene‐Oxide‐Catalyzed Cross‐Dehydrogenative Coupling of Oxindoles with Arenes and Thiophenols. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901224] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hongru Wu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale OptoeletronicsShenzhen University Shenzhen 518060 People's Republic of China E-mail addresses
| | - Chuntian Qiu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale OptoeletronicsShenzhen University Shenzhen 518060 People's Republic of China E-mail addresses
| | - Zhaofei Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale OptoeletronicsShenzhen University Shenzhen 518060 People's Republic of China E-mail addresses
| | - Bing Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale OptoeletronicsShenzhen University Shenzhen 518060 People's Republic of China E-mail addresses
| | - Shaolong Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale OptoeletronicsShenzhen University Shenzhen 518060 People's Republic of China E-mail addresses
- Department of Chemistry, Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Yangsen Xu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale OptoeletronicsShenzhen University Shenzhen 518060 People's Republic of China E-mail addresses
| | - Hongwei Zhou
- College of Biological, Chemical Science and EngineeringJiaxing University 118 Jiahang Road Jiaxing 314001 People's Republic of China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale OptoeletronicsShenzhen University Shenzhen 518060 People's Republic of China E-mail addresses
| | - Kian Ping Loh
- Department of Chemistry, Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
14
|
Ohnishi R, Sugawara M, Akakabe M, Ezawa T, Koshino H, Sohtome Y, Sodeoka M. Cross‐Coupling Reaction of Dimer‐Derived Persistent Tertiary‐Carbon‐Centered Radicals with Azo Compounds. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rikako Ohnishi
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research 2-1 Hirosawa, Wako Saitama Japan
- Graduate School of Science and EngineeringSaitama University 255 Shimo-okubo, Sakura-ku Saitama Japan
| | - Masumi Sugawara
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research 2-1 Hirosawa, Wako Saitama Japan
| | - Mai Akakabe
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research 2-1 Hirosawa, Wako Saitama Japan
| | - Tetsuya Ezawa
- Catalysis and Integrated Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa, Wako Saitama Japan
| | - Hiroyuki Koshino
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research 2-1 Hirosawa, Wako Saitama Japan
- Molecular Structure Characterization UnitTechnology Platform Division RIKEN Center for Sustainable Resource Science 2-1 Hirosawa, Wako Saitama Japan
| | - Yoshihiro Sohtome
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research 2-1 Hirosawa, Wako Saitama Japan
- Catalysis and Integrated Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa, Wako Saitama Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research 2-1 Hirosawa, Wako Saitama Japan
- Catalysis and Integrated Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa, Wako Saitama Japan
- Graduate School of Science and EngineeringSaitama University 255 Shimo-okubo, Sakura-ku Saitama Japan
| |
Collapse
|
15
|
Chiral acid-catalysed enantioselective C-H functionalization of toluene and its derivatives driven by visible light. Nat Commun 2019; 10:1774. [PMID: 30992448 PMCID: PMC6467922 DOI: 10.1038/s41467-019-09857-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/02/2019] [Indexed: 11/30/2022] Open
Abstract
Toluene and its derivatives are petroleum-derived raw materials produced from gasoline by catalytic reformation. These abundant chemical feedstocks are commonly used as solvents in organic synthesis. The C(sp3)−H functionalization of these unactivated substrates has been widely used to directly introduce benzylic motifs into diverse molecules to furnish important compounds. Despite these advances, progress in asymmetric catalysis remains underdeveloped. Here, we report photoinduced radical-based enantioselective C(sp3)−C(sp3) coupling reactions of activated ketones with toluene and its derivatives by means of chiral acid catalysis. With a La(OTf)3/pybox complex catalyst, a variety of chiral 3-hydroxy-3-benzyl-substituted 2-oxindoles, including many conventionally difficult-to-access variants, are obtained directly from isatins in high yields with good to excellent enantioselectivities. Acenaphthoquinone is also compatible with the use of a chiral phosphoric acid (CPA) catalyst, leading to another series of important enantioenriched tertiary alcohols. Asymmetric transformations involving abundant chemical feedstocks such as toluene and its derivatives are rather rare. Here, the authors report the radical enantioselective C(sp3) −C(sp3) coupling of activated ketones with toluenes by means of chiral acid catalysis to afford enantioenriched tertiary alcohols.
Collapse
|
16
|
Liang K, Li N, Zhang Y, Li T, Xia C. Transition-metal-free α-arylation of oxindoles via visible-light-promoted electron transfer. Chem Sci 2019; 10:3049-3053. [PMID: 30996886 PMCID: PMC6427940 DOI: 10.1039/c8sc05170d] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/20/2019] [Indexed: 01/07/2023] Open
Abstract
An operationally simple photochemical strategy for the direct arylation of oxindoles with (hetero)aryl halides in the absence of both transition metals and photoredox catalysts has been developed. The reaction provides an efficient way to construct various 3-aryloxindole building blocks of pharmaceutical interest at ambient temperature by using household compact fluorescent light (CFL) bulbs as the light source. Preliminarily, mechanistic studies revealed that the intermolecular electron transfer relied on the formation of photon-absorbing electron-donor-acceptor (EDA) complexes between electron-rich oxindole enolates and electron-deficient (hetero)aryl halides, and a radical chain mechanism was operative.
Collapse
Affiliation(s)
- Kangjiang Liang
- Key Laboratory of Medicinal Chemistry for Natural Resources (Ministry of Education and Yunnan Province) , School of Chemical Science and Technology , Yunnan University , 2 North Cuihu Road , Kunming 650091 , China .
| | - Na Li
- Key Laboratory of Medicinal Chemistry for Natural Resources (Ministry of Education and Yunnan Province) , School of Chemical Science and Technology , Yunnan University , 2 North Cuihu Road , Kunming 650091 , China .
| | - Yang Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources (Ministry of Education and Yunnan Province) , School of Chemical Science and Technology , Yunnan University , 2 North Cuihu Road , Kunming 650091 , China .
| | - Tao Li
- Key Laboratory of Medicinal Chemistry for Natural Resources (Ministry of Education and Yunnan Province) , School of Chemical Science and Technology , Yunnan University , 2 North Cuihu Road , Kunming 650091 , China .
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resources (Ministry of Education and Yunnan Province) , School of Chemical Science and Technology , Yunnan University , 2 North Cuihu Road , Kunming 650091 , China .
| |
Collapse
|
17
|
Ruan Z, Huang Z, Xu Z, Mo G, Tian X, Yu XY, Ackermann L. Catalyst-Free, Direct Electrochemical Tri- and Difluoroalkylation/Cyclization: Access to Functionalized Oxindoles and Quinolinones. Org Lett 2019; 21:1237-1240. [PMID: 30730146 DOI: 10.1021/acs.orglett.9b00361] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The catalyst-free electrochemical di- and trifluoromethylation/cyclization of N-substituted acrylamides was realized under external oxidant-free conditions. The strategy provides expedient access to fluoroalkylated oxindoles and 3,4-dihydroquinolin-2(1 H)-ones with ample scope and broad functional group tolerance by mild, direct electrolysis of sodium sulfinates in an undivided cell. Detailed mechanistic studies provided strong support for a SET-based reaction manifold.
Collapse
Affiliation(s)
- Zhixiong Ruan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P.R. China
| | - Zhixing Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P.R. China
| | - Zhongnan Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P.R. China
| | - Guangquan Mo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P.R. China
| | - Xu Tian
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P.R. China
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P.R. China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität , Tammannstraße 2 , 37077 Göttingen , Germany
| |
Collapse
|
18
|
Holzschneider K, Mohr F, Kirsch SF. Synthesis and Reactivity of 3,3-Diazidooxindoles. Org Lett 2018; 20:7066-7070. [DOI: 10.1021/acs.orglett.8b03013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kristina Holzschneider
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | | | - Stefan F. Kirsch
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| |
Collapse
|