1
|
Lee JS, Lee C, Jang J, Shin S. On-water accelerated sulfenylation of indole derivatives under visible light irradiation. Org Biomol Chem 2025; 23:3325-3329. [PMID: 40100040 DOI: 10.1039/d5ob00429b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
A visible-light promoted sulfenylation of N-carboxyindoles with thiols showed substantially higher rate and selectivity when conducted "on water". An EDA complex was proposed to form at the water-oil interface, generating thiyl radicals and thus initiating a chain reaction.
Collapse
Affiliation(s)
- Jun Sup Lee
- Department of Chemistry, Research Institute for Convergence of Basic Science, 222 Wangsimni-ro, Seongdong-gu, Hanyang University, Seoul 04763, Korea.
- Yuhan R&D Institute, 25, Tapsil-ro 35beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, 17084, Korea
| | - Chulyong Lee
- Department of Chemistry, Research Institute for Convergence of Basic Science, 222 Wangsimni-ro, Seongdong-gu, Hanyang University, Seoul 04763, Korea.
| | - Jiwon Jang
- Department of Chemistry, Research Institute for Convergence of Basic Science, 222 Wangsimni-ro, Seongdong-gu, Hanyang University, Seoul 04763, Korea.
| | - Seunghoon Shin
- Department of Chemistry, Research Institute for Convergence of Basic Science, 222 Wangsimni-ro, Seongdong-gu, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
2
|
Zhuo SY, Ye JL, Zheng X. Copper-catalyzed room-temperature cross-dehydrogenative coupling of secondary amides with terminal alkynes: a chemoselective synthesis of ynamides. Org Biomol Chem 2024; 22:1299-1309. [PMID: 38259138 DOI: 10.1039/d3ob02032k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A copper-catalyzed aerobic oxidative cross-dehydrogenative coupling reaction between secondary amides and terminal alkynes has been developed. With the aid of ligands and 3 Å molecular sieves, ynamides can be efficiently synthesized at room temperature and conveniently scaled up. A legitimate mechanism involving nitrogen-centred radicals and copper trivalent intermediates has been proposed.
Collapse
Affiliation(s)
- Shuang-Yan Zhuo
- Xiamen Key Laboratory of Chiral Drugs, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Jian-Liang Ye
- Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Xiao Zheng
- Xiamen Key Laboratory of Chiral Drugs, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
3
|
Xiong W, Zhou S, Zhang X, Zhao J, Huang J, Hu W, Xu X. Gold-Catalyzed Alkyne Multifunctionalization through an Oxidation-Oxyalkylation-Aryloxylation Sequence. Org Lett 2023; 25:405-409. [PMID: 36607257 DOI: 10.1021/acs.orglett.2c04115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A gold-catalyzed oxidative three-component reaction of terminal alkynes with alcohols and quinone monoimines has been disclosed, affording α-ketoacetals in good to excellent yields. By using quinone monoimines as electrophiles for the interception of the in situ generated gold enolate intermediate, this one-pot process provides an unprecedented method for the polyfunctionalization of terminal alkynes through an oxidation-oxyalkylation-aryloxylation sequence, installing three oxygen atoms on the C-C triple bond.
Collapse
Affiliation(s)
- Weichen Xiong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Su Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xinke Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jingyu Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jingjing Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Wenhao Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xinfang Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
4
|
Feng M, Tinelli R, Meyrelles R, González L, Maryasin B, Maulide N. Direct Synthesis of α-Amino Acid Derivatives by Hydrative Amination of Alkynes. Angew Chem Int Ed Engl 2023; 62:e202212399. [PMID: 36222199 PMCID: PMC10098499 DOI: 10.1002/anie.202212399] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/07/2022]
Abstract
α-Amino acid derivatives are key components of the molecules of life. The synthesis of α-amino carbonyl/carboxyl compounds is a contemporary challenge in organic synthesis. Herein, we report a practical method for the preparation of α-amino acid derivatives via direct hydrative amination of activated alkynes under mild conditions, relying on sulfinamides as the nitrogen source. Computational studies suggest that the reaction is enabled by a new type of sulfonium [2,3]-sigmatropic rearrangement.
Collapse
Affiliation(s)
- Minghao Feng
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Roberto Tinelli
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria.,Vienna Doctoral School in Chemistry, University of Vienna, Währinger Strasse 42, 1090, Vienna, Austria
| | - Ricardo Meyrelles
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria.,Institute of Theoretical Chemistry, University of Vienna, Währinger Strasse 17, 1090, Vienna, Austria.,Vienna Doctoral School in Chemistry, University of Vienna, Währinger Strasse 42, 1090, Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, University of Vienna, Währinger Strasse 17, 1090, Vienna, Austria
| | - Boris Maryasin
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria.,Institute of Theoretical Chemistry, University of Vienna, Währinger Strasse 17, 1090, Vienna, Austria
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| |
Collapse
|
5
|
Feng M, Tinelli R, Meyrelles R, González L, Maryasin B, Maulide N. Synthese von α-Aminosäurederivaten durch hydrative Aminierung von Alkinen. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202212399. [PMID: 38516564 PMCID: PMC10952632 DOI: 10.1002/ange.202212399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/11/2022]
Abstract
Abstractα‐Aminosäurederivate sind Kernbestandteile jeglichen Lebens. Die Synthese von α‐Aminocarbonyl/carboxyl Verbindungen ist jedoch weiterhin eine Herausforderung für die organische Synthese. In dieser Arbeit berichten wir von einer praktischen Herstellungsmethode für α‐Aminosäurederivate durch direkte hydrative Aminierung von aktivierten Alkinen mit Sulfinamiden unter milden Bedingungen. Computergestützte Untersuchungen legen nahe, dass eine [2,3]‐sigmatrope Sulfoniumumlagerung der zentrale Schritt der Reaktion ist.
Collapse
Affiliation(s)
- Minghao Feng
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| | - Roberto Tinelli
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
- Vienna Doctoral School in ChemistryUniversität WienWähringer Straße 421090WienÖsterreich
| | - Ricardo Meyrelles
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
- Institut für Theoretische ChemieUniversität WienWähringer Straße 171090WienÖsterreich
- Vienna Doctoral School in ChemistryUniversität WienWähringer Straße 421090WienÖsterreich
| | - Leticia González
- Institut für Theoretische ChemieUniversität WienWähringer Straße 171090WienÖsterreich
| | - Boris Maryasin
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
- Institut für Theoretische ChemieUniversität WienWähringer Straße 171090WienÖsterreich
| | - Nuno Maulide
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| |
Collapse
|
6
|
Nguyen QH, Um TW, Shin S. α-Carbonyl Radicals from N-Enoxybenzotriazoles: De Novo Synthesis of 9-Phenanthrols. Org Lett 2022; 24:8337-8342. [DOI: 10.1021/acs.orglett.2c03356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Quynh H. Nguyen
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Tae-Woong Um
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Seunghoon Shin
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
7
|
Bao M, Zhou S, Hu W, Xu X. Recent advances in gold-complex and chiral organocatalyst cooperative catalysis for asymmetric alkyne functionalization. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Wang W, Wang Y. Copper-Catalyzed Chemo-, Regio-, and Stereoselective Multicomponent 1,2,3-Trifunctionalization of Internal Alkynes. Org Lett 2022; 24:1871-1875. [PMID: 35238207 DOI: 10.1021/acs.orglett.2c00499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we report the first diaryliodonium salts promoted multicomponent 1,2,3-trifunctionalization of alkynes, where both the acetylenic bond and the adjacent nonactivated propargylic C(sp3)-H bond were functionalized synergistically to generate α-arylated enones with high chemo-, regio-, and stereoselectivity. A broad spectrum of diaryliodonium salts and internal alkynes could be utilized in this protocol, and a diverse collection of highly substituted and stereochemically defined linear and cyclic complex structures could be elaborated from the enone products.
Collapse
Affiliation(s)
- Weilin Wang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Youliang Wang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| |
Collapse
|
9
|
Nguyen NH, Oh SM, Park CM, Shin S. Ortho-selective C–H arylation of phenols with N-carboxyindoles under Brønsted acid- or Cu(i)-catalysis. Chem Sci 2022; 13:1169-1176. [PMID: 35211284 PMCID: PMC8790926 DOI: 10.1039/d1sc06157g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/26/2021] [Indexed: 01/25/2023] Open
Abstract
Control over chemo- and regioselectivity is a critical issue in the heterobiaryl synthesis via C–H oxidative coupling. To address this challenge, a strategy to invert the normal polarity of indoles in the heterobiaryl coupling was developed. With N-carboxyindoles as umpoled indoles, an exclusively ortho-selective coupling with phenols has been realized, employing a Brønsted acid- or Cu(i)-catalyst (as low as 0.01 mol%). A range of phenols and N-carboxyindoles coupled with exceptional efficiency and selectivity at ambient temperature and the substrates bearing redox-active aryl halides (–Br and –I) smoothly coupled in an orthogonal manner. Notably, preliminary examples of atropselective heterobiaryl coupling have been demonstrated, based on a chiral disulfonimide or a Cu(i)/chiral bisphosphine catalytic system. The reaction was proposed to occur through SN2′ substitution or a Cu(i)–Cu(iii) cycle, with Brønsted acid or Cu(i) catalysts, respectively. Control over chemo- and regioselectivity is a critical issue in the heterobiaryl synthesis via C–H oxidative coupling. To address this challenge, a strategy to invert the normal polarity of indoles was developed.![]()
Collapse
Affiliation(s)
- Nguyen H. Nguyen
- Department of Chemistry, Center for New Directions in Organic Synthesis (CNOS), Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Soo Min Oh
- Department of Chemistry, Center for New Directions in Organic Synthesis (CNOS), Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Cheol-Min Park
- Department of Chemistry, UNIST (Ulsan National Institute of Science and Technology), Ulsan 44919, Korea
| | - Seunghoon Shin
- Department of Chemistry, Center for New Directions in Organic Synthesis (CNOS), Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
10
|
Kumar R, Nguyen QH, Um TW, Shin S. Recent Progress in Enolonium Chemistry under Metal-Free Conditions. CHEM REC 2021; 22:e202100172. [PMID: 34418282 DOI: 10.1002/tcr.202100172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 11/09/2022]
Abstract
Umpolung approach through inversion of the polarity of conventional enolates, has opened up an unprecedented opportunity in the cross-coupling via alkylation. The enolonium equivalents can be accessed either by hypervalent iodine reagents, activation/oxidation of amides, or the oxidation of alkynes. Under umpolung conditions, highly basic conditions required for classical enolate chemistry can be avoided, and they can couple with unmodified nucleophiles such as heteroatom donors and electron-rich arenes.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Quynh H Nguyen
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Tae-Woong Um
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Seunghoon Shin
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| |
Collapse
|
11
|
Sandeep K, Siva Reddy A, Kumara Swamy KC. Palladium-catalysed cyclisation of ynamides and propargyl tethered iodosulfonamides with boronic acids leading to benzosultams. Org Biomol Chem 2021; 19:6871-6882. [PMID: 34323909 DOI: 10.1039/d1ob00925g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient and straightforward Pd-catalysed synthesis of diversely substituted sultams utilising ynamides and boronic acids is disclosed; toluene was found to be the most suitable solvent for this transformation. This strategy has been successfully applied to generate dihydrobenzo[d]isothiazole 1,1-dioxides and dihydro-2H-benzo[e][1,2]thiazine 1,1-dioxides. The advantages of this protocol are good functional group tolerance, broad substrate scope, high-yielding reaction and low catalyst loading to access benzofused sultams with five-/six-membered rings. The synthetic utility has been demonstrated by a gram-scale synthesis. A plausible catalytic cycle involving carbopalladation has been proposed for this transformation.
Collapse
Affiliation(s)
- K Sandeep
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India.
| | - Alla Siva Reddy
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India.
| | - K C Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India.
| |
Collapse
|
12
|
Zimin DP, Dar’in DV, Kukushkin VY, Dubovtsev AY. Oxygen Atom Transfer as Key To Reverse Regioselectivity in the Gold(I)-Catalyzed Generation of Aminooxazoles from Ynamides. J Org Chem 2020; 86:1748-1757. [DOI: 10.1021/acs.joc.0c02584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dmitry P. Zimin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Dmitry V. Dar’in
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Vadim Yu. Kukushkin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
- South Ural State University, 76, Lenin Av., Chelyabinsk 454080, Russian Federation
| | - Alexey Yu. Dubovtsev
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| |
Collapse
|
13
|
Campeau D, León Rayo DF, Mansour A, Muratov K, Gagosz F. Gold-Catalyzed Reactions of Specially Activated Alkynes, Allenes, and Alkenes. Chem Rev 2020; 121:8756-8867. [DOI: 10.1021/acs.chemrev.0c00788] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Dominic Campeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - David F. León Rayo
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Ali Mansour
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Karim Muratov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| |
Collapse
|
14
|
Abstract
Three- and four-membered rings, widespread motifs in nature and medicinal chemistry, have fascinated chemists ever since their discovery. However, due to energetic considerations, small rings are often difficult to assemble. In this regard, homogeneous gold catalysis has emerged as a powerful tool to construct these highly strained carbocycles. This review aims to provide a comprehensive summary of all the major advances and discoveries made in the gold-catalyzed synthesis of cyclopropanes, cyclopropenes, cyclobutanes, cyclobutenes, and their corresponding heterocyclic or heterosubstituted analogs.
Collapse
Affiliation(s)
- Mauro Mato
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Allegra Franchino
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Cristina Garcı A-Morales
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
15
|
Abstract
Over the past two decades, the development and application of ynamide chemistry have received more and more attention. Ynamides have proven to be versatile reagents for organic synthesis, and have been widely applied to the rapid assembly of a diverse range of structurally complex N-containing molecules, especially the valuable N-heterocycles. In comparison with the well-established transition metal-catalyzed reactions of ynamides, metal-free ynamide transformations have relatively seldom been exploited. Recently, Brønsted acid-mediated reactions of ynamides represent significant advances in ynamide chemistry. This review summarizes the latest trends and developments of Brønsted acid-mediated reactions of ynamides, including cycloaddition, cyclization, intramolecular alkoxylation-initiated rearrangement, oxygen atom transfer reactions and hydro-heteroatom addition reactions.
Collapse
Affiliation(s)
- Yang-Bo Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | |
Collapse
|
16
|
Mathi GR, Kweon B, Moon Y, Jeong Y, Hong S. Regioselective C−H Functionalization of Heteroarene
N
‐Oxides Enabled by a Traceless Nucleophile. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gangadhar Rao Mathi
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Byeongseok Kweon
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Yonghoon Moon
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Yujin Jeong
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| |
Collapse
|
17
|
Mathi GR, Kweon B, Moon Y, Jeong Y, Hong S. Regioselective C-H Functionalization of Heteroarene N-Oxides Enabled by a Traceless Nucleophile. Angew Chem Int Ed Engl 2020; 59:22675-22683. [PMID: 32888227 DOI: 10.1002/anie.202010597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/24/2020] [Indexed: 11/05/2022]
Abstract
Although N-alkenoxyheteroarenium salts have been widely used as umpoled synthons with nucleophilic (hetero)arenes, the use of electron-poor heteroarenes has remained unexplored. To overcome the inherent electron deficiency of quinolinium salts, a traceless nucleophile-triggered strategy was designed, wherein the quinolinium segment is converted into a dearomatized intermediate, thereby allowing simultaneous C8-functionalization of quinolines at room temperature. Experimental and computational studies support the traceless operation of a nucleophile, which enables the previously inaccessible transformation of N-alkenoxyheteroarenium salts. Remarkably, the generality of this strategy has been further demonstrated by broad applications in the regioselective C-H functionalization of other electron-deficient heteroarenes such as phenanthridine, isoquinoline, and pyridine N-oxides, offering a practical tool for the late-stage functionalization of complex biorelevant molecules.
Collapse
Affiliation(s)
- Gangadhar Rao Mathi
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Byeongseok Kweon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Yonghoon Moon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Yujin Jeong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| |
Collapse
|
18
|
Im J, Shin SI, Cho CG, Shin S. Aminooxygenation of Ynamides with N-Hydroxybenzotriazoles: Synthesis of α-Benzotriazolyl Carbonyl Compounds. J Org Chem 2020; 85:6935-6950. [PMID: 32316727 DOI: 10.1021/acs.joc.0c00174] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Addition of N-hydroxybenzotriazoles to ynamides causes spontaneous rearrangement, resulting in α-benzotriazolyl imides. The transformation proceeded at rt in the absence of any catalyst but could be efficiently catalyzed by Zn(OTf)2. Crossover experiments confirmed that the rearrangement is an intramolecular process, most likely via a concerted mechanism. However, heating the mixture above 110 °C resulted in isomerization of N2 into N1 product, via heterolytic C-N bond dissociation. This tandem addition-rearrangement sequence provides an efficient and atom-economical synthetic route for the synthesis of α-benzotriazolyl carbonyl compounds.
Collapse
Affiliation(s)
- Jangbin Im
- Department of Chemistry, Center for New Directions in Organic Synthesis (CNOS) and Research Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Sang Ik Shin
- Department of Chemistry, Center for New Directions in Organic Synthesis (CNOS) and Research Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Cheon-Gyu Cho
- Department of Chemistry, Center for New Directions in Organic Synthesis (CNOS) and Research Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Seunghoon Shin
- Department of Chemistry, Center for New Directions in Organic Synthesis (CNOS) and Research Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
19
|
Um TW, Lee G, Shin S. Enantioselective Synthesis of Tertiary α,α-Diaryl Carbonyl Compounds Using Chiral N,N'-Dioxides under Umpolung Conditions. Org Lett 2020; 22:1985-1990. [PMID: 32045252 DOI: 10.1021/acs.orglett.0c00333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brønsted acid-catalyzed addition of the chiral N,N'-dioxide into ynamides generated enolonium ions in situ which underwent enantioselective alkylation by indoles, pyrroles, and phenols, without racemization of the formed tertiary center. This external oxidant approach allows for the use of unmodified nucleophiles and does not leave trace groups from the oxidant, which significantly increases the synthetic efficiency and the product diversity. Furthermore, the byproduct of the N,N'-dioxide could be efficiently recycled into an optically pure form.
Collapse
Affiliation(s)
- Tae-Woong Um
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Girim Lee
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Seunghoon Shin
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
20
|
Yang WW, Chen LL, Chen P, Ye YF, Wang YB, Zhang X. Solvent-controlled divergent annulation of ynones and (iso)quinoline N-oxides: of 3-((iso)quinolin-1-yl)-4H-chromen-4-ones and 13H-isoquinolino[2,1-a]quinolin-13-ones. Chem Commun (Camb) 2020; 56:1183-1186. [PMID: 31894780 DOI: 10.1039/c9cc08713c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An effective annulation of ynones and (iso)quinoline N-oxides was developed to deliver various functionalized 3-((iso)quinolin-1-yl)-4H-chromen-4-ones and 13H-isoquinolino[2,1-a]quinolin-13-ones in moderate to excellent yields, respectively. This protocol exhibits high regioselectivity and broad substrate scope under transition-metal-free conditions. Moreover, the key reaction intermediate was successfully isolated and determined unambiguously by single crystal X-ray crystallography.
Collapse
Affiliation(s)
- Wan-Wan Yang
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | | | | | | | | | | |
Collapse
|
21
|
Danilkina NA, Vasileva AA, Balova IA. A.E.Favorskii’s scientific legacy in modern organic chemistry: prototropic acetylene – allene isomerization and the acetylene zipper reaction. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alexei Evgrafovich Favorskii was an outstanding organic chemist who left a great scientific legacy as a result of long time and fruitful work. Most of the theoretically and practically important discoveries of A.E.Favorskii were made in the chemistry of acetylene and its derivatives. Nowadays, the reactions discovered by him, which include acetylene – allene isomerization, the Favorskii and retro-Favorskii reactions, the Favorskii rearrangement and the vinylation reaction, are widely used in industry and in laboratory synthesis. This review summarizes the main scientific achievements of A.E.Favorskii, as well as their development in modern organic chemistry. Much consideration is given to acetylene – allene isomerization as a convenient method for the synthesis of methyl-substituted acetylenes and to the acetylene zipper reaction as a synthetic tool for obtaining terminal acetylenes. The review presents examples of the application of these reactions in modern organic synthesis of complex molecules, including natural compounds and their analogues.
The bibliography includes 266 references.
Collapse
|
22
|
Nguyen NH, Nguyen QH, Biswas S, Patil DV, Shin S. β-Oxidation of Ynamides into N, O-Acetals by mCPBA: Application in Enantioselective Intermolecular Transacetalization. Org Lett 2019; 21:9009-9013. [PMID: 31692359 DOI: 10.1021/acs.orglett.9b03411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oxidation of ynamides by mCPBA led to β-oxygenation and resulted in formation of carbonyl compounds with α-N,O-acetal functionality. These N,O-acetals are formed in high yields and can be stored indefinitely at room temperature. Yet, they can be activated by a chiral Brønsted acid and underwent an enantioselective transacetalization into a α-N,O-acetal. Subsequent diastereoselective transformations occurred with exceptional selectivity according to Felkin-Anh model.
Collapse
Affiliation(s)
- Nguyen H Nguyen
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS) , Hanyang University , 222 Wangsimni-ro , Seongdong-gu, Seoul 04763 , Korea
| | - Quynh H Nguyen
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS) , Hanyang University , 222 Wangsimni-ro , Seongdong-gu, Seoul 04763 , Korea
| | - Soumen Biswas
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS) , Hanyang University , 222 Wangsimni-ro , Seongdong-gu, Seoul 04763 , Korea
| | - Dilip V Patil
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS) , Hanyang University , 222 Wangsimni-ro , Seongdong-gu, Seoul 04763 , Korea
| | - Seunghoon Shin
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS) , Hanyang University , 222 Wangsimni-ro , Seongdong-gu, Seoul 04763 , Korea
| |
Collapse
|
23
|
Nguyen QH, Nguyen NH, Kim H, Shin S. Synthesis of γ-substituted carbonyl compounds from DMSO-mediated oxidation of enynamides: mechanistic insights and carbon- and hetero-functionalizations. Chem Sci 2019; 10:8799-8805. [PMID: 31803452 PMCID: PMC6849631 DOI: 10.1039/c9sc03663f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/04/2019] [Indexed: 02/05/2023] Open
Abstract
1,3-Enynamides underwent oxygenative coupling with carbon- and heteroatom nucleophiles with high remote selectivity. Kinetic analysis revealed a continuum mechanism between concerted SN2′′ and via a carbocation, depending on the nucleophiles used.
Oxidative coupling of 1,3-enynamides using DMSO as a terminal oxidant has been developed. Carbon as well as unmodified heteroatom nucleophiles, including aliphatic alcohols, thiols, and hydrazides, could be efficiently alkylated at the γ-position in a highly regioselective fashion. The kinetic analysis suggested a nucleophile-dependent mechanism ranging from a concerted SN2′′ to a carbocationic mechanism. Thus, the remote site-selectivity was ascribed to the partial positive charge developing at the terminal carbocationic center.
Collapse
Affiliation(s)
- Quynh H Nguyen
- Department of Chemistry , Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS) , Hanyang University , 222 Wangsimni-ro, Seongdong-gu , Seoul 04763 , Korea .
| | - Nguyen H Nguyen
- Department of Chemistry , Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS) , Hanyang University , 222 Wangsimni-ro, Seongdong-gu , Seoul 04763 , Korea .
| | - Hanbyul Kim
- Department of Chemistry , Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS) , Hanyang University , 222 Wangsimni-ro, Seongdong-gu , Seoul 04763 , Korea .
| | - Seunghoon Shin
- Department of Chemistry , Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS) , Hanyang University , 222 Wangsimni-ro, Seongdong-gu , Seoul 04763 , Korea .
| |
Collapse
|
24
|
Li X, Zhou G, Du X, Wang T, Zhang Z. Catalyst- and Additive-Free Cascade Reaction of Isoquinoline N-Oxides with Alkynones: An Approach to Benzoazepino[2,1-a]isoquinoline Derivatives. Org Lett 2019; 21:5630-5633. [PMID: 31287323 DOI: 10.1021/acs.orglett.9b01966] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xuetong Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710119, China
| | - Guanghua Zhou
- Department of Chemistry, Nanchang Normal University, No. 889 Ruixiang Road, Nanchang 330032, China
| | - Xinru Du
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710119, China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710119, China
| | - Zunting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710119, China
| |
Collapse
|