1
|
Tohidi MM, Paymard B, Vasquez-García SR, Fernández-Quiroz D. Recent progress in applications of cobalt catalysts in organic reactions. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
2
|
Synthesis of 2,5-Dialkyl-1,3,4-oxadiazoles Bearing Carboxymethylamino Groups. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227687. [PMID: 36431787 PMCID: PMC9696334 DOI: 10.3390/molecules27227687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
A series of new symmetrical 2,5-dialkyl-1,3,4-oxadiazoles containing substituted alkyl groups at the terminal positions with substituents, such as bromine, isopropyloxycarbonylmethylamino, and carboxymethylamino, were successfully synthesized. The developed multistep method employed commercially available acid chlorides differing in alkyl chain length and terminal substituent, hydrazine hydrate, and phosphorus oxychloride. The intermediate bromine-containing 2,5-dialkyl-1,3,4-oxadiazoles were easily substituted with diisopropyl iminodiacetate, followed by hydrolysis in aqueous methanol solution giving the corresponding 1,3,4-oxadiazoles bearing carboxymethylamino substituents. The structure of all products was confirmed by conventional spectroscopic methods including 1H NMR, 13C NMR, and HRMS.
Collapse
|
3
|
Synthesis and Biological Activity of 1,3,4-Oxadiazoles Used in Medicine and Agriculture. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083756] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biologically active compounds play a key role in the fight against diseases affecting both human and animal living organisms, as well as plants. Finding out about new molecules with a potential biological effect, not yet described in the literature, is one of the most important aspects in the development of medicine and agriculture. Compounds showing desirable biological activity include heterocyclic moieties such as 1,3,4-oxadiazoles. The oxadiazole molecule is composed of two nitrogen atoms and one oxygen atom, forming a five-membered heterocyclic ring. Structures of this type have been successfully used in the treatment of various diseases in humans and animals, and play an important role in modern agriculture. It has been proven that many oxadiazole derivatives exhibit antibacterial, antiviral, blood pressure lowering, antifungal, antineoplastic, anticancer, antioxidant, anti-inflammatory and analgesic properties. In addition, compounds based on 1,3,4-oxadiazole can act as plant protection agents due to their herbicidal, insecticidal and fungicidal activity. Due to the constantly growing interest in heterocyclic systems of this nature, new methods of obtaining complex structures containing oxadiazole rings are sought. This article discusses various methods of synthesis of 1,3,4-oxadiazole derivatives exhibiting biological activity. Based on these techniques, these compounds could be used in the future in medicine and agriculture.
Collapse
|
4
|
Liu L, Durai M, Doucet H. Transition Metal‐Catalyzed Regiodivergent C−H Arylations of Aryl‐Substituted Azoles. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Linhao Liu
- CNRS ISCR-UMR 6226 Univ Rennes 35000 Rennes France
| | | | - Henri Doucet
- CNRS ISCR-UMR 6226 Univ Rennes 35000 Rennes France
| |
Collapse
|
5
|
Shet H, Parmar U, Bhilare S, Kapdi AR. A comprehensive review of caged phosphines: synthesis, catalytic applications, and future perspectives. Org Chem Front 2021. [DOI: 10.1039/d0qo01194k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Caged phosphines are versatile ligands due to their rigid backbones, exhibiting a range of catalytic activities, as depicted through the given pictorial representation.
Collapse
Affiliation(s)
- Harshita Shet
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai 400019
- India
- Institute of Chemical Technology-Indian Oil Odisha Campus
| | | | - Shatrughn Bhilare
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai 400019
- India
| | - Anant R. Kapdi
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai 400019
- India
| |
Collapse
|
6
|
Vaaland IC, Sydnes MO. Consecutive Palladium Catalyzed Reactions in One-Pot Reactions. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190716150048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Combining palladium catalyzed reactions in one-pot reactions represents an efficient and
economical use of catalyst. The Suzuki-Miyaura cross-coupling has been proven to be a reaction
which can be combined with other palladium catalyzed reactions in the same pot. This mini-review
will highlight some of the latest examples where Suzuki-Miyaura cross-coupling reactions have been
combined with other palladium catalyzed reactions in one-pot reaction. Predominantly, examples
with homogeneous reaction conditions will be discussed in addition to a few examples from the authors
where Pd/C have been used as a catalyst.
Collapse
Affiliation(s)
- Ingrid Caroline Vaaland
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, NO-4036 Stavanger, Norway
| | - Magne Olav Sydnes
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, NO-4036 Stavanger, Norway
| |
Collapse
|
7
|
Baek J, Je EK, Kim J, Qi A, Ahn KH, Kim Y. Experimental and Theoretical Studies on the Mechanism of DDQ-Mediated Oxidative Cyclization of N-Aroylhydrazones. J Org Chem 2020; 85:9727-9736. [PMID: 32614179 DOI: 10.1021/acs.joc.0c00937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The controversial single-electron-transfer process, frequently proposed in many 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)-mediated reactions, was investigated experimentally and theoretically using the oxidative cyclization of aroylhydrazone with DDQ. DDQ-mediated oxadiazole formation involves several processes, including cyclization to form an oxadiazole ring and N-H bond cleavage, either by proton, hydride, or hydrogen atom transfer. The detailed mechanistic study using the M06-2X density functional theory, and the 6-31+G(d,p) basis set, suggests that the pathways involving radical ion pair (RIP) intermediates, which resulted from single-electron transfer (SET), were found to be energetically nearly identical to the pathway without the SET. The substituent-dependent reactivity of oxadiazole formation was consistent with the free energy profiles of both pathways, with or without the SET. This result indicates that in addition to the electron-transfer pathway, the nucleophilic addition/elimination pathway for DDQ should be considered as a possible mechanism of the oxidative transformation reaction using DDQ.
Collapse
Affiliation(s)
- Jihye Baek
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 446-701, Korea
| | - Eun-Kyung Je
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 446-701, Korea
| | - Jina Kim
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 446-701, Korea
| | - Ai Qi
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 446-701, Korea
| | - Kwang-Hyun Ahn
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 446-701, Korea
| | - Yongho Kim
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 446-701, Korea
| |
Collapse
|
8
|
Bhilare S, Shet H, Sanghvi YS, Kapdi AR. Discovery, Synthesis, and Scale-up of Efficient Palladium Catalysts Useful for the Modification of Nucleosides and Heteroarenes. Molecules 2020; 25:E1645. [PMID: 32260100 PMCID: PMC7181029 DOI: 10.3390/molecules25071645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/25/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid derivatives are imperative biomolecules and are involved in life governing processes. The chemical modification of nucleic acid is a fascinating area for researchers due to the potential activity exhibited as antiviral and antitumor agents. In addition, these molecules are also of interest toward conducting useful biochemical, pharmaceutical, and mutagenic study. For accessing such synthetically useful structures and features, transition-metal catalyzed processes have been proven over the years to be an excellent tool for carrying out the various transformations with ease and under mild reaction conditions. Amidst various transition-metal catalyzed processes available for nucleoside modification, Pd-catalyzed cross-coupling reactions have proven to be perhaps the most efficient, successful, and broadly applicable reactions in both academia and industry. Pd-catalyzed C-C and C-heteroatom bond forming reactions have been widely used for the modification of the heterocyclic moiety in the nucleosides, although a single catalyst system that could address all the different requirements for nucleoside modifications isvery rare or non-existent. With this in mind, we present herein a review showcasing the recent developments and improvements from our research groups toward the development of Pd-catalyzed strategies including drug synthesis using a single efficient catalyst system for the modification of nucleosides and other heterocycles. The review also highlights the improvement in conditions or the yield of various bio-active nucleosides or commercial drugs possessing the nucleoside structural core. Scale ups wherever performed (up to 100 g) of molecules of commercial importance have also been disclosed.
Collapse
Affiliation(s)
- Shatrughn Bhilare
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India;
| | - Harshita Shet
- Department of Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, MouzaSamantpuri, Bhubaneswar 751013, Odisha, India;
| | - Yogesh S. Sanghvi
- Rasayan Inc., 2802, Crystal Ridge Road, Encinitas, CA 92024-6615, USA;
| | - Anant R. Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India;
- Department of Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, MouzaSamantpuri, Bhubaneswar 751013, Odisha, India;
| |
Collapse
|
9
|
Ramsingh Girase T, Bhilare S, Sankar Murthy Bandaru S, Chrysochos N, Schulzke C, Sanghvi YS, Kapdi AR. Carbazole‐Based N‐Heterocyclic Carbenes for the Promotion of Copper‐Catalyzed Palladium‐Free Homo‐/Hetero‐Coupling of Alkynes and Sonogashira Reactions. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Shatrughn Bhilare
- Department of ChemistryInstitute of Chemical Technology Nathalal Parekh road, Matunga Mumbai 400019 India
| | | | - Nicolas Chrysochos
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Straße 4 D-17487 Greifswald Germany
| | - Carola Schulzke
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Straße 4 D-17487 Greifswald Germany
| | - Yogesh S. Sanghvi
- Rasayan Inc. 2802, Crystal Ridge Road Encinitas, California 92024-6615 USA
| | - Anant R. Kapdi
- Department of ChemistryInstitute of Chemical Technology Nathalal Parekh road, Matunga Mumbai 400019 India
- Institute of Chemical Technology-Indian Oil Odisha CampusIIT Kharagpur extension Centre Mouza Samantpuri Bhubaneswar 751013, Odisha India
| |
Collapse
|
10
|
Bandaru SSM, Bhilare S, Cardozo J, Chrysochos N, Schulzke C, Sanghvi YS, Gunturu KC, Kapdi AR. Pd/PTABS: Low-Temperature Thioetherification of Chloro(hetero)arenes. J Org Chem 2019; 84:8921-8940. [DOI: 10.1021/acs.joc.9b00840] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Shatrughn Bhilare
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| | - Jesvita Cardozo
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| | - Nicolas Chrysochos
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, Greifswald D-17487, Germany
| | - Carola Schulzke
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, Greifswald D-17487, Germany
| | - Yogesh S. Sanghvi
- Rasayan Inc., 2802 Crystal Ridge Road, Encinitas, California 92024-6615, United States
| | | | - Anant R. Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
- Institute of Chemical Technology, Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza
Samantpuri, Bhubaneswar, Odisha 751013, India
| |
Collapse
|