1
|
Xiang Z, Zhang Y, Bo L, Shen Z, Wang D, Shen Z, Tang Y. Removal performance and mechanism of aniline from landfill leachate by ozone oxidation process using iron-based packed catalyst. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124397. [PMID: 39899924 DOI: 10.1016/j.jenvman.2025.124397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/14/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
Aniline in landfill leachate was used as a target pollutant and treated by a catalytic ozonation process (COP). The catalyst was based on waste iron shavings, which were oxidatively modified to form an iron-based ozonation catalyst (FOC), and subsequently compressed into an iron-based packing for catalyzing the ozonolysis of aniline (FCOP). The special porous structure of the compressed packing material enhanced the decomposition of O3. FCOP achieved 93% removal of aniline from the simulated wastewater, which was significantly better than the ozonation alone process (OOP). At low pH (<3), the removal of aniline relied on the endo-Fenton mechanism due to the presence of Fe2+ and H2O2. At high pH (>5), aniline was removed by the COP mechanism. At the FOC surface, electron transfer facilitated ozonolysis to produce •OH radicals, which simultaneously produced Fe2+ oxidation and Fe3+ reduction, establishing a redox cycle. The main role of -OH in the FCOP system and the aniline degradation pathway were determined using EPR and related techniques. FCOP is a cost-effective and environmentally friendly process that can be used to treat aniline in the future.
Collapse
Affiliation(s)
- Zhiquan Xiang
- Suzhou High-speed Railway Sushui Water Co, 215000, China; Suzhou Water Conservancy Co., Ltd, Suzhou, 215000, China.
| | - Yijie Zhang
- School of Resource and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China.
| | - Lei Bo
- Suzhou High-speed Railway Sushui Water Co, 215000, China
| | - Zhuowei Shen
- Suzhou High-speed Railway Sushui Water Co, 215000, China
| | - Dan Wang
- Suzhou High-speed Railway Sushui Water Co, 215000, China
| | - Zhiqiang Shen
- Suzhou High-speed Railway Sushui Water Co, 215000, China
| | - Yaoyu Tang
- Suzhou High-speed Railway Sushui Water Co, 215000, China
| |
Collapse
|
2
|
Yan X, Wang J, Chen C, Zheng K, Zhang P, Shen C. Remote Sulfonylation of Anilines with Sodium Sulfifinates Using Biomass-Derived Copper Catalyst. Molecules 2024; 29:4815. [PMID: 39459182 PMCID: PMC11509939 DOI: 10.3390/molecules29204815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
A biomass-based catalyst, CuxOy@CS-400, was employed as an excellent recyclable heterogeneous catalyst to realize the sulfonylation reaction of aniline derivatives with sodium sulfinates. Various substrates were compatible, giving the desired products moderate to good yields at room temperature. In addition, this heterogeneous copper catalyst was also easy to recover and was recyclable up to five times without considerably deteriorating in catalytic efficiency. Importantly, these sulfonylation products were readily converted to the corresponding 4-sulfonyl anilines via a hydrolysis step. The method offers a unique strategy for synthesizing arylsulfones and has the potential to create new possibilities for developing heterogeneous copper-catalyzed C-H functionalizations.
Collapse
Affiliation(s)
- Xiaoping Yan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jinguo Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Chao Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Kai Zheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Pengfei Zhang
- Key Laboratory of Organosilicon Chemistry and Material Technology, College of Material, Chemistry and Chemical Engineering, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Chao Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
3
|
Chen G, Chu F, Zhang S, Li W, Zhou S, Wei W, Chen W, Wang X, Yue L, Feng H, Cui Y, Pan Y. Ortho C-H Bond Activations in an Atmospheric Microwave Plasma Ion Source. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:951-959. [PMID: 38597607 DOI: 10.1021/jasms.4c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
C-H bond ortho-substitution reaction has always been a significant and challenging topic in organic chemistry. We proposed a synthesis method based on microwave plasma torches. High-resolution mass spectrometry was used to monitor rapid reaction products. 2-Alkylbenzimidazole can be formed through the reaction of phenylnitrenium ion and nitriles on a millisecond scale. This reaction can achieve the one-step formation of benzimidazoles from benzene ring single-substituted compounds without the addition of external oxidants or catalysts. A similar C-H bond activation reaction can be accomplished with ketones. Meanwhile, the microwave plasma reactor was modified, and the resulting 2-methylbenzimidazole was successfully collected, indicating the device has good application potential in organic reactions such as C-H bond activation reaction.
Collapse
Affiliation(s)
- Guanru Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027 Zhejiang, P. R. China
| | - Fengjian Chu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Shuheng Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027 Zhejiang, P. R. China
| | - Wangyu Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027 Zhejiang, P. R. China
| | - Shiwen Zhou
- Department of Chemistry, Zhejiang University, Hangzhou 310027 Zhejiang, P. R. China
| | - Wei Wei
- Department of Chemistry, Zhejiang University, Hangzhou 310027 Zhejiang, P. R. China
| | - Weiwei Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027 Zhejiang, P. R. China
| | - Xiaozhi Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Lei Yue
- College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Hongru Feng
- Department of Chemistry, Zhejiang University, Hangzhou 310027 Zhejiang, P. R. China
| | - Yanli Cui
- Department of Chemistry, Zhejiang University, Hangzhou 310027 Zhejiang, P. R. China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027 Zhejiang, P. R. China
| |
Collapse
|
4
|
Biswas S, Ghosh S, Das I. Supporting Electrolyte-Free Electrochemical Oxidative C-H Sulfonylation and Thiocyanation of Fused Pyrimidin-4-Ones in an All-Green Electrolytic System. Chemistry 2024; 30:e202303118. [PMID: 37934155 DOI: 10.1002/chem.202303118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
An electrooxidative C-H functionalization is a widely accepted route to obtain sulfur-containing arenes and heteroarenes. However, this process often involves using non-recyclable supporting electrolytes, (co)solvents like hexafluoroisopropanol, additives like acid, or catalysts. The use of additional reagents can increase costs and waste, reducing atom efficiency. Moreover, unlike other nitrogen-containing heterocycles, there have only been sporadic reports of electrochemical C-H functionalization in fused pyrimidin-4-ones, and an electrolyte-free process has yet to be developed. This work demonstrates that such anodic coupling reactions can be performed in an all-green electrolytic system without using such additional electrolytes or HFIP, maintaining a high atom economy. This C-H functionalization strategy utilizes inexpensive sodium sulfinates and ammonium thiocyanate as sulfonylating and thiocyanating agents in an undivided cell at a constant current, using a mixture of CH3 CN/H2 O as solvent at room temperature. Thus, fused pyrimidin-4-ones can be selectively converted into C3-sulfonylated and -thiocyanated derivatives in moderate to good yields.
Collapse
Affiliation(s)
- Sumit Biswas
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, 700032, Kolkata, India
| | - Subhadeep Ghosh
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, 700032, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Indrajit Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, 700032, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| |
Collapse
|
5
|
Li XQ, Liao QQ, Lai J, Liao YY. Visible-light-mediated sulfonylation of anilines with sulfonyl fluorides. Front Chem 2023; 11:1267223. [PMID: 37693172 PMCID: PMC10485258 DOI: 10.3389/fchem.2023.1267223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Sulfonylaniline motif plays an important role in pharmaceutical sciences. Developed methods towards this structure are typically lack of good modifiability and stability. In this study, visible-light-mediated sulfonylation of aniline using sulfonyl fluoride as a modifiable and stable sulfonylation reagent is described. A variety of substituted sulfonylanilines were synthesized under mild reaction conditions with moderate to good efficiency. The example of late-stage sulfonylation highlighted the advantage of using sulfonyl fluoride as a sulfonylation reagent. In addition, the crucial influence of counterions on the photocatalyst observed in this system would inspire further research on the photochemistry of sulfonyl fluoride.
Collapse
Affiliation(s)
- Xin-Qing Li
- Department of Pharmacy, Ganzhou People’s Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Qian-Qian Liao
- Department of Pharmacy, People’s Hospital of Guilin, Guilin, China
| | - Jun Lai
- Department of Pharmacy, Ganzhou People’s Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Yuan-Yue Liao
- Department of Pharmacy, Ganzhou People’s Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| |
Collapse
|
6
|
Wei W, Zhan L, Gao L, Huang G, Ma X. Research Progress of Electrochemical Synthesis of C-Sulfonyl Compounds. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202205018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
7
|
Liu W, Hao L, Zhang J, Zhu T. Progress in the Electrochemical Reactions of Sulfonyl Compounds. CHEMSUSCHEM 2022; 15:e202102557. [PMID: 35174969 DOI: 10.1002/cssc.202102557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Electrosynthesis has recently attracted more and more attention due to its great potential to replace chemical oxidants or reductants in molecule-electrode electron transfer. Sulfonyl compounds such as sulfonyl hydrazides, sulfinic acids (and their salts), sulfonyl halides have been discovered as practical precursors of several radicals. As electrochemical redox reactions can provide green and efficient pathways for the activation of sulfonyl compounds, studies for electrosynthesis have rapidly increased. Several types of radicals can be generated from anodic oxidation or cathodic reduction of sulfonyl compounds and can initiate fluoroalkylation, benzenesulfonylation, cyclization or rearrangement. In this Review, we summarize the electrosynthesis developments involving sulfonyl compounds mainly in the last decade.
Collapse
Affiliation(s)
- Wangsheng Liu
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lin Hao
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tingshun Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
8
|
Zhu S, Wang BB, Tan MC, Qian X, Ying S, Liu Y, Li C, Jin Z, Jiang H, Gui QW. Ultrasound Accelerated Expedient and Eco-Friendly Synthesis of Aryl
Sulfonates Using I2 As Catalyst At Ambient Conditions. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210929124259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Aryl sulfonates were developed by ssing an energy-saving and eco-friendly
approach, through ultrasound-assisted coupling reaction of readily sodium sulfinates with
N-hydroxyphthalimide, under metal-free and mild conditions within 10 min at room temperature.
Collapse
Affiliation(s)
- Sha Zhu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P.R. China
| | - Bin-Bin Wang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P.R. China
| | - Mei-Chen Tan
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P.R. China
| | - Xiaofu Qian
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P.R. China
| | - Shengneng Ying
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P.R. China
| | - Yang Liu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P.R. China
| | - Cehua Li
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P.R. China
| | - Zheng Jin
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P.R. China
| | - Hongmei Jiang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P.R. China
| | - Qing-Wen Gui
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P.R. China
| |
Collapse
|
9
|
Liu Y, Bai S, Du Y, Qi X, Gao H. Expeditious and Efficient
ortho
‐Selective Trifluoromethane‐sulfonylation of Arylhydroxylamines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yue Liu
- School of Chemistry and Chemical Engineering Shandong University 27 South Shanda Road Ji'nan 250100, Shandong China
| | - Songlin Bai
- National Institute of Biological Sciences Beijing 102206 China
- Tsinghua Institute of Multidisciplinary Biomedical Research Tsinghua University Beijing 100084 China
| | - Yuanbo Du
- School of Chemistry and Chemical Engineering Shandong University 27 South Shanda Road Ji'nan 250100, Shandong China
| | - Xiangbing Qi
- National Institute of Biological Sciences Beijing 102206 China
- Tsinghua Institute of Multidisciplinary Biomedical Research Tsinghua University Beijing 100084 China
| | - Hongyin Gao
- School of Chemistry and Chemical Engineering Shandong University 27 South Shanda Road Ji'nan 250100, Shandong China
| |
Collapse
|
10
|
Luo X, Wang S, Lei A. Electrochemical‐induced hydroxysulfonylation of α‐CF3 alkenes to access tertiary β‐hydroxysulfones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Xu XH, Zhen JS, Du X, Yuan H, Li YH, Chu MH, Luo Y. Visible-Light-Mediated Late-Stage Sulfonylation of Anilines with Sulfonamides. Org Lett 2022; 24:853-858. [PMID: 35048703 DOI: 10.1021/acs.orglett.1c04144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visible-light-mediated late-stage sulfonylation of anilines with sulfonamides under simple reaction conditions is presented. Various primary or secondary sulfonamides including several pharmaceuticals were incorporated successfully via N-S bond activation and C-H bond sulfonylation. The synthetic utility of this strategy is highlighted by the construction of complex anilines bearing diverse bioactive groups.
Collapse
Affiliation(s)
- Xiao-Hong Xu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Jing-Song Zhen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Xian Du
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Han Yuan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Yi-Hui Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Man-Hei Chu
- Yew Wah International Education School of Guangzhou, Guangzhou 510890, P. R. China
| | - Yong Luo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
12
|
Yu Y, Fang Y, Tang R, Xu D, Dai S, Zhang W. Electrochemical oxidative sulfonylation of N‐arylamides/amine with sodium sulfinates. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yingliang Yu
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Yang Fang
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Rumeng Tang
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Dongping Xu
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Shuaishuai Dai
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Wu Zhang
- Anhui Normal University College of Chemistry and Materials Science 1 Beijing Eastroad 241000 Wuhu CHINA
| |
Collapse
|
13
|
Wang Y, Zhang F, Wang Y, Pan Y. Electrochemistry Enabled Nickel‐catalyzed Selective C‐S Bond Coupling Reaction. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yang Wang
- Suzhou University of Science and Technology School of Chemistry and Life Science Nanjing CHINA
| | - Feng Zhang
- Nanjing University School of Chemistry and Chemical Engineering Nanjing CHINA
| | - Yi Wang
- Nanjing University School of Chemistry and Chemical Engineering 163 Xianlin Avenue 210023 Nanjing CHINA
| | - Yi Pan
- Nanjing University School of Chemistry and Chemical Engineering Nanjing CHILE
| |
Collapse
|
14
|
Bugaenko DI, Karchava AV, Yurovskaya MA. Transition metal-free cross-coupling reactions with the formation of carbon-heteroatom bonds. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Lu L, Shi R, Lei A. Single-electron transfer oxidation-induced C–H bond functionalization via photo-/electrochemistry. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2021.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Fu Z, Yang Z, Sun L, Yin J, Yi X, Cai H, Lei A. Electrochemical Synthesis of Aryl Sulfonates from Sodium Sulfinates and Phenols under Metal-Free Conditions. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Liu Y, Bai S, Du Y, Qi X, Gao H. Expeditious and Efficient ortho-Selective Trifluoromethane-sulfonylation of Arylhydroxylamines. Angew Chem Int Ed Engl 2021; 61:e202115611. [PMID: 34904339 DOI: 10.1002/anie.202115611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 12/14/2022]
Abstract
A metal- and oxidant-free, practical and efficient method for the synthesis of highly versatile and synthetically useful ortho-trifluoromethanesulfonylated anilines from arylhydroxylamines and trifluoromethanesulfinic chloride was developed. This rapid transformation proceeded smoothly with good yields and excellent ortho-selectivity in the absence of any metals or ligands. Mechanistically, the reaction comprised a noncanonical O-trifluoromethanesulfinylation of the arylhydroxylamine, and the subsequent [2,3]-sigmatropic rearrangement to afford ortho-trifluoromethanesulfonylated aniline derivatives. The practical application of this reaction was demonstrated by further conversion into a series of functional molecules under different reaction conditions.
Collapse
Affiliation(s)
- Yue Liu
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| | - Songlin Bai
- National Institute of Biological Sciences, Beijing, 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Yuanbo Du
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing, 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Hongyin Gao
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| |
Collapse
|
18
|
Liang S, Hofman K, Friedrich M, Keller J, Manolikakes G. Recent Progress and Emerging Technologies towards a Sustainable Synthesis of Sulfones. CHEMSUSCHEM 2021; 14:4878-4902. [PMID: 34476903 PMCID: PMC9292207 DOI: 10.1002/cssc.202101635] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Indexed: 06/12/2023]
Abstract
Sulfones play a pivotal role in modern organic chemistry. They are highly versatile building blocks and find various applications as drugs, agrochemicals, or functional materials. Therefore, sustainable access to this class of molecules is of great interest. Herein, the goal was to provide a summary on recent developments in the field of sustainable sulfone synthesis. Advances and existing limitations in traditional approaches towards sulfones were reviewed on selected examples. Furthermore, novel emerging technologies for a more sustainable sulfone synthesis and future directions were discussed.
Collapse
Affiliation(s)
- Shuai Liang
- Department of Medicinal Chemistry, School of PharmacyQingdao University Medical CollegeNo.1 Ningde Road266073QingdaoP. R. China
| | - Kamil Hofman
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Marius Friedrich
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Julian Keller
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Georg Manolikakes
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| |
Collapse
|
19
|
Kim W, Kim HY, Oh K. Oxidation Potential-Guided Electrochemical Radical-Radical Cross-Coupling Approaches to 3-Sulfonylated Imidazopyridines and Indolizines. J Org Chem 2021; 86:15973-15991. [PMID: 34185997 DOI: 10.1021/acs.joc.1c00873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxidation potential-guided electrochemical radical-radical cross-coupling reactions between N-heteroarenes and sodium sulfinates have been established. Thus, simple cyclic voltammetry measurement of substrates predicts the likelihood of successful radical-radical coupling reactions, allowing the simple and direct synthetic access to 3-sulfonylated imidazopyridines and indolizines. The developed electrochemical radical-radical cross-coupling reactions to sulfonylated N-heteroarenes boast the green synthetic nature of the reactions that are oxidant- and metal-free.
Collapse
Affiliation(s)
- Wansoo Kim
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea.,Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
20
|
Reddy RJ, Kumari AH. Synthesis and applications of sodium sulfinates (RSO 2Na): a powerful building block for the synthesis of organosulfur compounds. RSC Adv 2021; 11:9130-9221. [PMID: 35423435 PMCID: PMC8695481 DOI: 10.1039/d0ra09759d] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/31/2021] [Indexed: 12/15/2022] Open
Abstract
This review highlights the preparation of sodium sulfinates (RSO2Na) and their multifaceted synthetic applications. Substantial progress has been made over the last decade in the utilization of sodium sulfinates emerging as sulfonylating, sulfenylating or sulfinylating reagents, depending on reaction conditions. Sodium sulfinates act as versatile building blocks for preparing many valuable organosulfur compounds through S-S, N-S, and C-S bond-forming reactions. Remarkable advancement has been made in synthesizing thiosulfonates, sulfonamides, sulfides, and sulfones, including vinyl sulfones, allyl sulfones, and β-keto sulfones. The significant achievement of developing sulfonyl radical-triggered ring-closing sulfonylation and multicomponent reactions is also thoroughly discussed. Of note, the most promising site-selective C-H sulfonylation, photoredox catalytic transformations and electrochemical synthesis of sodium sulfinates are also demonstrated. Holistically, this review provides a unique and comprehensive overview of sodium sulfinates, which summarizes 355 core references up to March 2020. The chemistry of sodium sulfinate salts is divided into several sections based on the classes of sulfur-containing compounds with some critical mechanistic insights that are also disclosed.
Collapse
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University Hyderabad 500 007 India
| | - Arram Haritha Kumari
- Department of Chemistry, University College of Science, Osmania University Hyderabad 500 007 India
| |
Collapse
|
21
|
Zhu J, Chen Z, He M, Wang D, Li L, Qi J, Shi R, Lei A. Metal-free electrochemical C3-sulfonylation of imidazo[1,2-a]pyridines. Org Chem Front 2021. [DOI: 10.1039/d1qo00348h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An electrochemical C3-sulfonylation of imidazo[1, 2-a]pyridines with sodium benzenesulfinate has been developed, providing an straightforward protocol towards biologically and synthetically useful 3-(arylsulfonyl)imidazo[1, 2-a]pyridine.
Collapse
Affiliation(s)
- Jingyun Zhu
- National Research Center for Carbohydrate Synthesis
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| | - Ziyue Chen
- National Research Center for Carbohydrate Synthesis
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| | - Meng He
- College of Chemistry and Molecular Sciences
- Institute for Advanced Studies (IAS)
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Daoxin Wang
- National Research Center for Carbohydrate Synthesis
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| | - Liangsen Li
- National Research Center for Carbohydrate Synthesis
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| | - Junchao Qi
- National Research Center for Carbohydrate Synthesis
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| | - Renyi Shi
- School of Chemical Engineering and Technology
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
- College of Chemistry and Molecular Sciences
| |
Collapse
|
22
|
Jamshidi M, Amani A, Khazalpour S, Torabi S, Nematollahi D. Progress and perspectives of electrochemical insights for C–H and N–H sulfonylation. NEW J CHEM 2021. [DOI: 10.1039/d1nj03574f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A comprehensive electrosulfonylation study has been carried out via cathodic and anodic approaches for the production of organosulfone and sulfonamide derivatives.
Collapse
Affiliation(s)
- Mahdi Jamshidi
- Faculty of Chemistry, Bu-Ali-Sina University, Hamedan 65174, Iran
| | - Ameneh Amani
- Nahavand Higher Education Complex, Bu-Ali Sina University, Hamedan, Iran
| | | | - Sara Torabi
- Faculty of Chemistry, Bu-Ali-Sina University, Hamedan 65174, Iran
| | | |
Collapse
|
23
|
Dong D, Han Q, Yang S, Song J, Li N, Wang Z, Xu X. Recent Progress in Sulfonylation via Radical Reaction with Sodium Sulfinates, Sulfinic Acids, Sulfonyl Chlorides or Sulfonyl Hydrazides. ChemistrySelect 2020. [DOI: 10.1002/slct.202003650] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Dao‐Qing Dong
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Qing‐Qing Han
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Shao‐Hui Yang
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Jing‐Cheng Song
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Na Li
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Zu‐Li Wang
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Xin‐Ming Xu
- College ofChemistry and Chemical Engineering Yantai University Yantai 264005 P.R. China
| |
Collapse
|
24
|
Mulina OM, Ilovaisky AI, Parshin VD, Terent'ev AO. Oxidative Sulfonylation of Multiple Carbon‐Carbon bonds with Sulfonyl Hydrazides, Sulfinic Acids and their Salts. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000708] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Olga M. Mulina
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexey I. Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Vadim D. Parshin
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| |
Collapse
|