1
|
Farajat D, Zhang Y, Li CJ. Magic methylation with methyl-containing peroxides. Chem Sci 2025; 16:507-529. [PMID: 39640027 PMCID: PMC11615666 DOI: 10.1039/d4sc05620e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Methyl groups rank among the most abundant carbon fragments found in natural products and small-molecule pharmaceuticals. The late-stage and environmentally friendly installation of these groups onto biologically active molecules has attracted widespread attention in both industry and academia. In 2008, we published the first use of a methyl radical derived from a peroxide toward a directed transition-metal catalysed C-H methylation. In the past sixteen years, methyl-containing peroxides have proven themselves as robust reagents for introducing methyl groups onto organic molecules. In this review, our goal is to provide a thorough summary of the research advancements achieved in this field thus far.
Collapse
Affiliation(s)
- Daliah Farajat
- Department of Chemistry, McGill University 801 Sherbrooke Street West Montreal Quebec H3A 2K6 Canada
| | - Yuhua Zhang
- Accustandard Inc. 125 Market Street New Haven Connecticut 06513 USA
| | - Chao-Jun Li
- Department of Chemistry, McGill University 801 Sherbrooke Street West Montreal Quebec H3A 2K6 Canada
- FRQNT Centre for Green Chemistry and Catalysis Canada
| |
Collapse
|
2
|
Zhu Y, Zhang Y, Zhao X, Lu K. Photochemical alkylation of quinoxalin-2(1 H)-ones with N, N, N', N'-tetraalkylethylenediamine. Org Biomol Chem 2024; 22:8951-8957. [PMID: 39405168 DOI: 10.1039/d4ob01494d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
A visible-light-induced C-3 alkylation of quinoxalin-2(1H)-ones with N,N,N',N'-tetraalkylethylenediamine was achieved without an external photocatalyst. The mechanism showed that quinoxalin-2(1H)-ones could act as photocatalysts. The accessibility of the reagents and the green and mild reaction conditions made this protocol an alternative method to access C-3 alkylated quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
- Yaqing Zhu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Yi Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Xia Zhao
- College of Chemistry, TianJin Key Laboratory of Structure and Performance for Functional Molecules, TianJin Normal University, TianJin, 300387, China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| |
Collapse
|
3
|
Zhou C, Liu Y, Luo Q, Zhang Y, Zhou J, Zhang H, Liu J. Microwave-accelerated cross-dehydrogenative-coupling (CDC) of N-(quinolin-8-yl)amides with acetone/acetonitrile under metal-free conditions. RSC Adv 2023; 13:21231-21235. [PMID: 37456538 PMCID: PMC10340454 DOI: 10.1039/d3ra03651k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
A highly selective remote C(sp3)-H acetonation of N-(quinolin-8-yl)amide scaffolds at the C5-position under microwave irradiation has been developed. In the absence of a transition-metal-catalyst, benzoyl peroxide (BPO)-promoted cross-dehydrogenation coupling (CDC) of N-(quinolin-8-yl)amides with acetone/acetonitrile occurred smoothly to generate the corresponding 5-acetonated/acetonitriled N-(quinolin-8-yl)amides in good yields. The transformation is operationally simple, rapid, easily scaled-up to the gram scale, and shows a broad substrate scope.
Collapse
Affiliation(s)
- Chao Zhou
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University Huaibei Anhui 235000 P. R. China
| | - Yunwei Liu
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University Huaibei Anhui 235000 P. R. China
| | - Qi Luo
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University Huaibei Anhui 235000 P. R. China
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University Huaibei Anhui 235000 P. R. China
| | - Jingwen Zhou
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University Huaibei Anhui 235000 P. R. China
| | - Haoyu Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University Huaibei Anhui 235000 P. R. China
| | - Jie Liu
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University Huaibei Anhui 235000 P. R. China
| |
Collapse
|
4
|
More DA, Mujahid M, Muthukrishnan M. Metal‐ And Light‐Free Direct C‐3 Ketoalkylation of Quinoxalin‐2(1
H
)‐Ones with Cyclopropanols in Aqueous Medium. ChemistrySelect 2022. [DOI: 10.1002/slct.202203597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Devidas A. More
- Division of Organic Chemistry CSIR - National Chemical Laboratory Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - M. Mujahid
- Division of Organic Chemistry CSIR - National Chemical Laboratory Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - M. Muthukrishnan
- Division of Organic Chemistry CSIR - National Chemical Laboratory Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
5
|
Peng S, Liu J, Yang LH, Xie LY. Sunlight Induced and Recyclable g-C 3N 4 Catalyzed C-H Sulfenylation of Quinoxalin-2(1 H)-Ones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155044. [PMID: 35956990 PMCID: PMC9370749 DOI: 10.3390/molecules27155044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
A sunlight-promoted sulfenylation of quinoxalin-2(1H)-ones using recyclable graphitic carbon nitride (g-C3N4) as a heterogeneous photocatalyst was developed. Using the method, various 3-sulfenylated quinoxalin-2(1H)-ones were obtained in good to excellent yields under an ambient air atmosphere. Moreover, the heterogeneous catalyst can be recycled at least six times without significant loss of activity.
Collapse
|
6
|
Slathia N, Gupta A, Kapoor K. I2/ TBHP Reagent System: A Modern Paradigm for Organic Transformations. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Kamal Kapoor
- University of Jammu Department of Chemistry Department of Chemistry 180006 Jammu INDIA
| |
Collapse
|
7
|
Wang M, Zhang Z, Xiong C, Sun P, Zhou C. Microwave‐Accelerated Cross‐Dehydrogenative Coupling of Quinoxalin‐2(1
H
)‐ones with Alkanes under Transition‐Metal‐Free Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Min Wang
- Nanjing Normal University Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing 210023 China
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| | - Zhongyi Zhang
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| | - Chunxia Xiong
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| | - Peipei Sun
- Nanjing Normal University Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing 210023 China
| | - Chao Zhou
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| |
Collapse
|
8
|
Abstract
C−H methylation of sp2 and sp3 carbon centers is significant in many biological processes. Methylated drug candidates show unique properties due to the change in solubility, conformation and metabolic activities. Several photo-catalyzed, electrochemical, mechanochemical and metal-free techniques that are widely utilized strategies in medicinal chemistry for methylation of arenes and heteroarenes have been covered in this review.
Collapse
|
9
|
Zhao M, Zhang K, Xu J, Li J. Fe III/TBHP mediated remote C–O bond construction of 8-aminoquinolines: access to methoxylation and cyanomethoxylation. Org Chem Front 2022. [DOI: 10.1039/d2qo00438k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The C5 regioselective methoxylation and cyanomethoxylation of 8-aminoquinolines were achieved under FeIII/TBHP system by tuning the temperature and solvent. TBHP was investigated as an “oxygen” source in the ether bond formation for the first time.
Collapse
Affiliation(s)
- Mengfei Zhao
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, P. R. China
| | - Kaixin Zhang
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, P. R. China
| | - Jianxiong Xu
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, P. R. China
| | - Jizhen Li
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, P. R. China
- State Key laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| |
Collapse
|
10
|
Liu X, Guo Z, Liu Y, Chen X, Li J, Zou D, Wu Y, Wu Y. Metal-Free Alkylation of Quinoxalinones with Aryl Alkyl ketones. Org Biomol Chem 2022; 20:1391-1395. [DOI: 10.1039/d1ob02260a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first metal-free method for alkylation of quinoxalinones using cheap and stable aryl alkyl ketones as nucleophilic alkylation reagents is reported. This strategy greatly broadens the application channels of aryl...
Collapse
|
11
|
Peng S, Liu JJ, Yang L. Alkylation of quinoxalin-2(1 H)-ones using phosphonium ylides as alkylating reagents. Org Biomol Chem 2021; 19:9705-9710. [PMID: 34726225 DOI: 10.1039/d1ob01858b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical and efficient methodology for the construction of 3-alkylquinoxalinones through base promoted direct alkylation of quinoxalin-2(1H)-ones with phosphonium ylides as alkylating reagents under metal- and oxidant-free conditions was developed. Various 3-alkylquinoxalin-2(1H)-ones were easily obtained in good to excellent yields. Tentative mechanistic studies suggest that this reaction is likely to involve a nucleophilic addition-elimination process.
Collapse
Affiliation(s)
- Sha Peng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| | - Jun-Jia Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| | - Luo Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| |
Collapse
|
12
|
|
13
|
Huang J, Chen Z, Wu J. Recent Progress in Methyl-Radical-Mediated Methylation or Demethylation Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jiapian Huang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, and Jiangxi Key Laboratory of Green Chemistry, College of Chemistry & Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, P. R. China
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Zhiyuan Chen
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, and Jiangxi Key Laboratory of Green Chemistry, College of Chemistry & Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, P. R. China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
14
|
Singh S, Dagar N, Raha Roy S. Direct functionalization of quinoxalin-2(1H)-one with alkanes: C(sp 2)-H/C(sp 3)-H cross coupling in transition metal-free mode. Org Biomol Chem 2021; 19:5383-5394. [PMID: 34047750 DOI: 10.1039/d1ob00665g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Considering the significance of pharmaceutically important heterocycles, efficient and highly versatile protocols for the functionalization of diverse heterocycles with easily accessible feedstock are crucial. Here, we have reported selective alkylation of quinoxalin-2(1H)-one with a broad class of hydrocarbons having different C(sp3)-H bonds with varying bond strengths using di-tert-butyl peroxide (DTBP) as an alkoxyl radical mediator for hydrogen atom transfer (HAT). This dehydrogenative coupling approach utilizes feedstock chemicals such as cycloalkanes, cyclic ethers and alkyl arenes as coupling partners. This protocol exhibits good functional group compatibility and selectivity regarding both heterocycles and unactivated alkanes. Moreover, this methodology allows functionalization of relatively strong C-H bonds of adamantane and exclusive selectivity towards 3° C(sp3)-H bonds is observed. We also illustrate the applicability of this C(sp2)-H/C(sp3)-H cross-coupling for practical access to bioactive pharmaceuticals.
Collapse
Affiliation(s)
- Swati Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Neha Dagar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
15
|
Guo J, Zhang L, Du X, Zhang L, Cai Y, Xia Q. Metal‐Free Direct Oxidative C−N Bond Coupling of Quinoxalin‐2(1
H
)‐ones with Azoles under Mild Conditions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jingwen Guo
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Lina Zhang
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Xinyue Du
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Liting Zhang
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Yuepiao Cai
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Qinqin Xia
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| |
Collapse
|
16
|
Aynetdinova D, Callens MC, Hicks HB, Poh CYX, Shennan BDA, Boyd AM, Lim ZH, Leitch JA, Dixon DJ. Installing the “magic methyl” – C–H methylation in synthesis. Chem Soc Rev 2021; 50:5517-5563. [DOI: 10.1039/d0cs00973c] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Following notable cases of remarkable potency increases in methylated analogues of lead compounds, this review documents the state-of-the-art in C–H methylation technology.
Collapse
Affiliation(s)
- Daniya Aynetdinova
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Mia C. Callens
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Harry B. Hicks
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Charmaine Y. X. Poh
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | | | - Alistair M. Boyd
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Zhong Hui Lim
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Jamie A. Leitch
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Darren J. Dixon
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| |
Collapse
|
17
|
Tong X, Luo SS, Shen H, Zhang S, Cao T, Luo YP, Huang LL, Ma XT, Liu XW. Nickel-catalyzed defluorinative alkylation of C(sp 2)–F bonds. Org Chem Front 2021. [DOI: 10.1039/d1qo00549a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A nickel-catalyzed defluorinative alkylation of unactivated C(sp2)–F electrophiles using commercially available trialkylaluminum reagents, thus forming the C(sp2)–C(sp3) bonds is reported.
Collapse
Affiliation(s)
- Xue Tong
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Si-Si Luo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Hua Shen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Shu Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Tian Cao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Yi-Peng Luo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Long-Ling Huang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Xi-Tao Ma
- Hospital of Chengdu University of Traditional Chinese Medicine
- Chengdu 610072
- China
| | - Xiang-Wei Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| |
Collapse
|
18
|
Su HY, Zhu XL, Huang Y, Xu XH, Qing FL. Copper-catalyzed chemoselective C-H functionalization of quinoxalin-2(1 H)-ones with hexafluoroisopropanol. Chem Commun (Camb) 2020; 56:12805-12808. [PMID: 32966399 DOI: 10.1039/d0cc05623e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An unexpected three-component reaction of quinoxalin-2(1H)-ones, tert-butyl peroxybenzoate (TBPB), and hexafluoroisopropanol (HFIP) is described. Under CuBr-catalyzed and TBPB-oxidized conditions, a variety of hydroxyhexafluoroisobutylated quinoxalin-2(1H)-ones were formed. Furthermore, the first hexafluoroisopropoxylation of the quinoxalin-2(1H)-ones with HFIP is also demonstrated with Cu2O as the catalyst and PhI(OAc)2 as the oxidant. These new transformations of HFIP furnish previously unknown and potentially useful fluorinated quinoxalin-2(1H)-one derivatives.
Collapse
Affiliation(s)
- Hai-Yan Su
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China.
| | - Xiao-Lei Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China.
| | - Yangen Huang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China.
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China.
| | - Feng-Ling Qing
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China. and Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China.
| |
Collapse
|
19
|
Direct Introduction of Sulfonamide Groups into Quinoxalin‐2(1
H
)‐ones by Cu‐Catalyzed C3‐H Functionalization. Chem Asian J 2020; 15:3365-3369. [DOI: 10.1002/asia.202000916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Indexed: 12/14/2022]
|
20
|
Sharma S, Dutta NB, Bhuyan M, Das B, Baishya G. tert-Butylhydroperoxide (TBHP) mediated oxidative cross-dehydrogenative coupling of quinoxalin-2(1 H)-ones with 4-hydroxycoumarins, 4-hydroxy-6-methyl-2-pyrone and 2-hydroxy-1,4-naphthoquinone under metal-free conditions. Org Biomol Chem 2020; 18:6537-6548. [PMID: 32789325 DOI: 10.1039/d0ob01304h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We report an efficient and atom-economical method of C-3 functionalization of quinoxalin-2(1H)-ones with 4-hydroxycoumarins, 4-hydroxy-6-methyl-2-pyrone, and 2-hydroxy-1,4-naphthoquinone via the free radical cross-coupling pathway under metal-free conditions. tert-Butylhydroperoxide (TBHP) smoothly promotes the reaction furnishing the cross-dehydrogenative coupling (CDC) products in very good to excellent yields. The protocol neither uses any toxic reagents nor metal catalysts to carry out the reaction, and all the products have been obtained without column chromatography purification. Different radical trapping experiments with 2,2,6,6-tetramethylpiperidine-1-oxyl, butylated hydroxytoluene, and diphenyl ethylene confirm the involvement of radicals.
Collapse
Affiliation(s)
- Suraj Sharma
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India. and Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh-201002, India
| | - Nibedita Baruah Dutta
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India. and Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh-201002, India and Rain Forest Research Institute, Jorhat-785001, India
| | - Mayurakhi Bhuyan
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India. and Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh-201002, India
| | - Babulal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, India
| | - Gakul Baishya
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India. and Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh-201002, India
| |
Collapse
|