1
|
Yasuda Y, Shizu K, Tanaka H, Kaji H. Enhanced Luminance of Pentaazaphenalene-Based Delayed Fluorescence Emitters by Breaking Forbidden Transition. Angew Chem Int Ed Engl 2025:e202504390. [PMID: 40202379 DOI: 10.1002/anie.202504390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/10/2025]
Abstract
1,3,4,6,9b-pentaazaphenalene (5AP) derivatives are of growing interest because of their potential for exhibiting thermally activated delayed fluorescence and inverted singlet-triplet excited state properties. However, a major challenge has been the nonemissive nature of 5AP. This study reports a donor-5AP-acceptor-type molecular design for converting nonemissive 5AP into highly emissive molecules. The newly designed molecules, 2,5-di(1-pyrrolidino)-7,9-bis(4-(trifluoromethyl)phenyl)-1,3,4,6,9b-pentaazaphenalene (Pyr-5AP-CF3) and 2,5-di(1-pyrrolidino)-7,9-bis(4-benzonitrile)-1,3,4,6,9b-pentaazaphenalene (Pyr-5AP-CN), exhibited delayed fluorescence and achieved high photoluminescence quantum yields of 83.5% and 90.6%, respectively, in solid films. These values dramatically exceed those of previously reported 5AP derivatives with only 8% or less. Furthermore, Pyr-5AP-CF3 and Pyr-5AP-CN exhibited the fastest radiative decays and the narrowest emission spectra among all the 5AP based materials reported to date. This study provides a promising solution to the nonemissive nature of 5AP, leading to the development of a class of highly luminescent materials for future organic light-emitting diodes.
Collapse
Affiliation(s)
- Yuka Yasuda
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Katsuyuki Shizu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Hiroyuki Tanaka
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
2
|
Takahashi H, Watanabe H, Ito S, Tanaka K, Chujo Y. Design and Synthesis of Far-Red to Near-Infrared Chromophores with Pyrazine-Based Boron Complexes. Chem Asian J 2023; 18:e202300489. [PMID: 37365136 DOI: 10.1002/asia.202300489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023]
Abstract
We synthesized new binuclear boron complexes based on pyrazine with ortho and para substitution patterns. It was demonstrated that the para-linked complexes possess a significantly narrow energy gap between highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO), leading to their far-red to near-infrared emission properties. Meanwhile, the ortho-substituted complex showed orange emission. Considering the HOMO and LUMO distributions of pyrazine, the boron complexation to the nitrogen atoms would stabilize its LUMO more efficiently than its HOMO because a nodal plane in the HOMO passes through the two nitrogen atoms. The theoretical study suggests that the para-substitution would not significantly perturb such a characteristic HOMO distribution originating from pyrazine in stark contrast to the ortho-substituted one. As a result, the HOMO-LUMO gap of the para-linked complex is dramatically narrower than that of the ortho-linked one.
Collapse
Grants
- Kato Foundation for Promotion of Science
- Grant-in-Aid for Early-Career Scientists
- 21K14673 JSPS KAKENHI
- 23K13793 JSPS KAKENHI
- 21H02001 JSPS KAKENHI
- 21K19002 JSPS KAKENHI
- 2401 The Ministry of Education, Culture, Sports, Science, and Technology, Japan
- JP24102013 The Ministry of Education, Culture, Sports, Science, and Technology, Japan
Collapse
Affiliation(s)
- Hiromasa Takahashi
- Department of Polymer Chemistry Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Hiroyuki Watanabe
- Department of Polymer Chemistry Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shunichiro Ito
- Department of Polymer Chemistry Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
3
|
Recent progresses in the mechanistic studies of aggregation-induced emission-active boron complexes and clusters. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Watanabe H, Tanaka K, Chujo Y. Position Dependent Effects of the Aza‐Substitution on the Electronic Properties and Crystal Structures Based on Hexaazaphenalene Isomers. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hiroyuki Watanabe
- Kyoto University: Kyoto Daigaku Department of Polymer Chemistry, Graduate School of Engineering JAPAN
| | - Kazuo Tanaka
- Kyoto University Graduate School of Engineering, Department of Polymer Chemistry Katsura, Nishikyo-ku 615-8510 Kyoto JAPAN
| | - Yoshiki Chujo
- Kyoto University: Kyoto Daigaku Department of Polymer Chemistry, Graduate School of Engineering JAPAN
| |
Collapse
|
5
|
Development of Long Wavelength Light-Absorptive Homopolymers Based on Pentaazaphenalene by Regioselective Oxidative Polymerization. Polymers (Basel) 2021; 13:polym13224021. [PMID: 34833319 PMCID: PMC8619047 DOI: 10.3390/polym13224021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 12/23/2022] Open
Abstract
We report the synthesis and absorption properties of homopolymers consisting of 1,3,4,6,9b-pentaazaphenalene (5AP). Oxidative polymerization in the Scholl reaction was accomplished, and various lengths of homopolymers can be isolated. It should be noted that we scarcely observed the generation of structural isomers at the connecting points, which is often observed in this type of reaction. Therefore, we were able to evaluate electronic structures of the synthesized homopolymers. In addition, it was observed that absorption bands were obtained in the longer wavelength region than the monomer. The computer calculation suggests that the highest occupied molecular orbital (HOMO) energy levels could be lowered by electronic interaction through spatially-separated HOMOs of 5AP. Moreover, we can evaluate the extension of the conjugated system through the meta-substituted skeleton and distance dependency of the main-chain conjugation.
Collapse
|
6
|
Gon M, Ito S, Tanaka K, Chujo Y. Design Strategies and Recent Results for Near-Infrared-Emissive Materials Based on Element-Block π-Conjugated Polymers. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunichiro Ito
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
7
|
Watanabe H, Tanaka K, Chujo Y. The Effect of the Substituent Positions on Self-Assembly Behaviors of Liquid-Crystalline 1,3,4,6,9b-Pentaazaphenalene Derivatives. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hiroyuki Watanabe
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
8
|
Modulation of
stimuli‐responsiveness
toward acid vapor between
real‐time
and
write‐erase
responses based on conjugated polymers containing azobenzene and Schiff base moieties. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Pios S, Huang X, Sobolewski AL, Domcke W. Triangular boron carbon nitrides: an unexplored family of chromophores with unique properties for photocatalysis and optoelectronics. Phys Chem Chem Phys 2021; 23:12968-12975. [PMID: 34059871 DOI: 10.1039/d1cp02026a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It has recently been shown that cycl[3.3.3]azine and heptazine (1,3,4,6,7,9,9b-heptaazaphenalene) as well as related azaphenalenes exhibit inverted singlet and triplet states, that is, the energy of the lowest singlet excited state (S1) is below the energy of the lowest triplet excited state (T1). This feature is unique among all known aromatic chromophores and is of outstanding relevance for applications in photocatalysis and organic optoelectronics. Heptazine is the building block of the polymeric material graphitic carbon nitride which is an extensively explored photocatalyst in hydrogen evolution photocatalysis. Derivatives of heptazine have also been identified as efficient emitters in organic light emitting diodes (OLEDs). In both areas, the inverted singlet-triplet gap of heptazine is a highly beneficial feature. In photocatalysis, the absence of a long-lived triplet state eliminates the activation of atmospheric oxygen, which is favourable for long-term operational stability. In optoelectronics, singlet-triplet inversion implies the possibility of 100% fluorescence efficiency of electron-hole recombination. However, the absorption and luminescence wavelengths of heptazine and the S1-S0 transition dipole moment are difficult to tune for optimal functionality. In this work, we employed high-level ab initio electronic structure theory to devise and characterize a large family of novel heteroaromatic chromophores, the triangular boron carbon nitrides. These novel heterocycles inherit essential spectroscopic features from heptazine, in particular the inverted singlet-triplet gap, while their absorption and luminescence spectra and transition dipole moments are widely tuneable. For applications in photocatalysis, the wavelength of the absorption maximum can be tuned to improve the overlap with the solar spectrum at the surface of earth. For applications in OLEDs, the colour of emission can be adjusted and the fluorescence yield can be enhanced.
Collapse
Affiliation(s)
- Sebastian Pios
- Department of Chemistry, Technical University of Munich, 85747 Garching, Germany.
| | - Xiang Huang
- Department of Chemistry, Technical University of Munich, 85747 Garching, Germany.
| | | | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, 85747 Garching, Germany.
| |
Collapse
|
10
|
Gon M, Tanimura K, Yaegashi M, Tanaka K, Chujo Y. PPV-type π-conjugated polymers based on hypervalent tin(IV)-fused azobenzene complexes showing near-infrared absorption and emission. Polym J 2021. [DOI: 10.1038/s41428-021-00506-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Tanaka K, Chujo Y. New Idea for Narrowing an Energy Gap by Selective Perturbation of One Frontier Molecular Orbital. CHEM LETT 2021. [DOI: 10.1246/cl.200756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
12
|
Gon M, Wakabayashi J, Nakamura M, Tanaka K, Chujo Y. Preparation of Near‐Infrared Emissive π‐Conjugated Polymer Films Based on Boron‐Fused Azobenzene Complexes with Perpendicularly Protruded Aryl Substituents. Macromol Rapid Commun 2020; 42:e2000566. [DOI: 10.1002/marc.202000566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/19/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura Nishikyo‐ku Kyoto 615‐8510 Japan
| | - Junko Wakabayashi
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura Nishikyo‐ku Kyoto 615‐8510 Japan
| | - Masashi Nakamura
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura Nishikyo‐ku Kyoto 615‐8510 Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura Nishikyo‐ku Kyoto 615‐8510 Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura Nishikyo‐ku Kyoto 615‐8510 Japan
| |
Collapse
|
13
|
Wakabayashi J, Gon M, Tanaka K, Chujo Y. Near-Infrared Absorptive and Emissive Poly(p-phenylene vinylene) Derivative Containing Azobenzene–Boron Complexes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00745] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Junko Wakabayashi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|