1
|
Dolas AJ, Yadav J, Nagare YK, Rangan K, Iype E, Kumar I. Enantioselective synthesis of α-(3-pyrrolyl)methanamines with an aza-tetrasubstituted center under metal-free conditions. Org Biomol Chem 2024; 23:98-102. [PMID: 39535059 DOI: 10.1039/d4ob01729c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Construction of a chiral methanamine unit at the C3 position of pyrrole is highly desirable; nevertheless, it remains challenging due to its intrinsic electronic properties. Herein, we present an operationally straightforward and direct asymmetric approach for accessing α-(3-pyrrolyl)methanamines under benign organocatalytic conditions for the first time. The one-pot transformation proceeds smoothly through an amine-catalyzed direct Mannich reaction of succinaldehyde with various endo-cyclic imines, followed by a Paal-Knorr cyclization with a primary amine. Several N-H/alkyl/Ar α-(3-pyrrolyl)methanamines with an aza-tetrasubstituted center have been synthesized with good yields and excellent enantioselectivity.
Collapse
Affiliation(s)
- Atul Jankiram Dolas
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| | - Jyothi Yadav
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| | - Yadav Kacharu Nagare
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Eldhose Iype
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Indresh Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| |
Collapse
|
2
|
Torres-Oya S, Zurro M. Non-covalent organocatalyzed enantioselective cyclization reactions of α,β-unsaturated imines. Beilstein J Org Chem 2024; 20:3221-3255. [PMID: 39691215 PMCID: PMC11650568 DOI: 10.3762/bjoc.20.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024] Open
Abstract
Asymmetric cycloaddition is a straightforward strategy which enables the synthesis of structurally distinct cyclic derivatives which are difficult to access by other methodologies, using an efficient and atom-economical path from simple precursors. In recent years several asymmetric catalytic cyclization strategies have been accomplished for the construction of N-heterocycles using various catalytic systems such as chiral metal catalysts, chiral Lewis acids or chiral organocatalysts. This review presents an overview of the recent advances in enantioselective cyclization reactions of 1-azadienes catalyzed by non-covalent organocatalysts.
Collapse
Affiliation(s)
- Sergio Torres-Oya
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá (IRYCIS), 28805 Madrid, Spain
| | - Mercedes Zurro
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá (IRYCIS), 28805 Madrid, Spain
| |
Collapse
|
3
|
Zhao C, Gao R, Ma W, Li M, Li Y, Zhang Q, Guan W, Fu J. A facile synthesis of α,β-unsaturated imines via palladium-catalyzed dehydrogenation. Nat Commun 2024; 15:4329. [PMID: 38773128 PMCID: PMC11109338 DOI: 10.1038/s41467-024-48737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/13/2024] [Indexed: 05/23/2024] Open
Abstract
The dehydrogenation adjacent to an electron-withdrawing group provides an efficient access to α,β-unsaturated compounds that serving as versatile synthons in organic chemistry. However, the α,β-desaturation of aliphatic imines has hitherto proven to be challenging due to easy hydrolysis and preferential dimerization. Herein, by employing a pre-fluorination and palladium-catalyzed dehydrogenation reaction sequence, the abundant simple aliphatic amides are amendable to the rapid construction of complex molecular architectures to produce α,β-unsaturated imines. Mechanistic investigations reveal a Pd(0)/Pd(II) catalytic cycle involving oxidative H-F elimination of N-fluoroamide followed by a smooth α,β-desaturation of the in-situ generated aliphatic imine intermediate. This protocol exhibits excellent functional group tolerance, and even the carbonyl groups are compatible without any competing dehydrogenation, allowing for late-stage functionalization of complex bioactive molecules. The synthetic utility of this transformation has been further demonstrated by a diversity-oriented derivatization and a concise formal synthesis of (±)-alloyohimbane.
Collapse
Affiliation(s)
- Chunyang Zhao
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Rongwan Gao
- Department of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wenxuan Ma
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Miao Li
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yifei Li
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wei Guan
- Department of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China.
| | - Junkai Fu
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
4
|
Dong ZH, Li S, Long T, Zhan J, Ruan CK, Yan X, Chu WD, Yuan K, Liu QZ. Copper-Catalyzed Enantioselective 1,2-Allylation of Azadienes with Allylboronates. Org Lett 2024; 26:3235-3240. [PMID: 38557113 DOI: 10.1021/acs.orglett.4c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Catalytic asymmetric 1,2-allylation of aurone-derived azadienes is very difficult to achieve due to the driving force for aromatization and the greater steric hindrance of 1,2-addition compared with 1,4-addition. By taking advantage of the ability of nitrogen ligated metal complexes, we successfully demonstrated the first example of copper-catalyzed 1,2-allylation of azadienes with allylboronates for the highly enantioselective synthesis of homoallylic amines. Meanwhile, the enantioenriched 1,4-addition products could also be obtained through a subsequent 3,3-sigmatropic rearrangement of the 1,2-addition products. Extensive DFT calculations were carried out to elucidate the origins of high regioselectivity (1,2- vs 1,4-) and enantioselectivity.
Collapse
Affiliation(s)
- Zhi-Hong Dong
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P.R. China
| | - Shu Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P.R. China
| | - Teng Long
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P.R. China
| | - Jie Zhan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P.R. China
| | - Cheng-Kai Ruan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P.R. China
| | - Xu Yan
- College of Chemical Engineering and Technology, Key Laboratory for New Molecule Materials Design and Function of Gansu Universities, Tianshui Normal University, Tianshui, Gansu 741001, P.R. China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P.R. China
| | - Kun Yuan
- College of Chemical Engineering and Technology, Key Laboratory for New Molecule Materials Design and Function of Gansu Universities, Tianshui Normal University, Tianshui, Gansu 741001, P.R. China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P.R. China
| |
Collapse
|
5
|
Hao W, Wang L, Zhang J, Teng D, Cao G. Synthesis of spiropyridazine-benzosultams by the [4 + 2] annulation reaction of 3-substituted benzoisothiazole 1,1-dioxides with 1,2-diaza-1,3-dienes. Beilstein J Org Chem 2024; 20:280-286. [PMID: 38379732 PMCID: PMC10877075 DOI: 10.3762/bjoc.20.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
A simple and efficient method for the synthesis of spiropyridazine-benzosultams has been developed by means of [4 + 2] annulation reaction of 3-substituted benzoisothiazole 1,1-dioxides with 1,2-diaza-1,3-dienes. This approach displays advantages such as mild reaction conditions, wide substrate range tolerance, simple operation, compatibility with gram-scale preparation.
Collapse
Affiliation(s)
- Wenqing Hao
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Lu, Qingdao 266042, China
| | - Long Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Lu, Qingdao 266042, China
| | - Jinlei Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Lu, Qingdao 266042, China
| | - Dawei Teng
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Lu, Qingdao 266042, China
| | - Guorui Cao
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Lu, Qingdao 266042, China
| |
Collapse
|
6
|
Dyguda M, Przydacz A, Albrecht Ł. Dearomative, aminocatalytic formal normal-electron-demand aza-Diels-Alder cycloaddition in the synthesis of tetrahydrofuropyridines. Chem Commun (Camb) 2023; 59:12903-12906. [PMID: 37819685 DOI: 10.1039/d3cc03946c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In the manuscript the application of dearomative formal normal-electron-demand aza-Diels-Alder cycloaddition in the synthesis of tetrahydrofuropyridines is described. The developed approach utilizes aminocatalytic activation of 2-alkyl-3-furfurals that proceeds via formation of the dearomatized dienamine intermediate. Initially obtained cycloadducts have been subjected to subsequent transformations providing access to tetrahydrofuropyridines or functionalized cinnamates. The mechanism of the process has been confirmed by DFT calculations.
Collapse
Affiliation(s)
- Mateusz Dyguda
- Faculty of Chemistry, Institute of Organic Chemistry Lodz University of Technology Żeromskiego 114, 90-543 Lodz, Poland.
| | - Artur Przydacz
- Faculty of Chemistry, Institute of Organic Chemistry Lodz University of Technology Żeromskiego 114, 90-543 Lodz, Poland.
| | - Łukasz Albrecht
- Faculty of Chemistry, Institute of Organic Chemistry Lodz University of Technology Żeromskiego 114, 90-543 Lodz, Poland.
| |
Collapse
|
7
|
Tavassoli AM, Zolfigol MA, Yarie M. Application of new multi-H-bond catalyst for the preparation of substituted pyridines via a cooperative vinylogous anomeric-based oxidation. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
8
|
Diaza-1,3-butadienes as Useful Intermediate in Heterocycles Synthesis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196708. [PMID: 36235245 PMCID: PMC9573662 DOI: 10.3390/molecules27196708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/05/2022]
Abstract
Many heterocyclic compounds can be synthetized using diaza-1,3-butadienes (DADs) as key structural precursors. Isolated and in situ diaza-1,3-butadienes, produced from their respective precursors (typically imines and hydrazones) under a variety of conditions, can both react with a wide range of substrates in many kinds of reactions. Most of these reactions discussed here include nucleophilic additions, Michael-type reactions, cycloadditions, Diels–Alder, inverse electron demand Diels–Alder, and aza-Diels–Alder reactions. This review focuses on the reports during the last 10 years employing 1,2-diaza-, 1,3-diaza-, 2,3-diaza-, and 1,4-diaza-1,3-butadienes as intermediates to synthesize heterocycles such as indole, pyrazole, 1,2,3-triazole, imidazoline, pyrimidinone, pyrazoline, -lactam, and imidazolidine, among others. Fused heterocycles, such as quinazoline, isoquinoline, and dihydroquinoxaline derivatives, are also included in the review.
Collapse
|
9
|
Miao YH, Hua YZ, Gao HJ, Mo NN, Wang MC, Mei GJ. Catalytic asymmetric inverse-electron-demand aza-Diels-Alder reaction of 1,3-diazadienes with 3-vinylindoles. Chem Commun (Camb) 2022; 58:7515-7518. [PMID: 35687078 DOI: 10.1039/d2cc02458f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A facile chiral phosphoric-acid catalyzed asymmetric inverse-electron-demand aza-Diels-Alder reaction of 1,3-diazadienes with 3-vinylindoles was established. By using this mild and practical protocol, a broad range of benzothiazolopyrimidines with three contiguous stereogenic centers were prepared in good yields and excellent diastereo- and enantio-selectivities (43 examples, up to 83% yield, >99% ee and all >20 : 1 dr). A plausible concerted reaction pathway enabled by the dual hydrogen-bonding effect was proposed to account for the observed excellent enantioselectivity and specific trans-trans diastereoselectivity.
Collapse
Affiliation(s)
- Yu-Hang Miao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yuan-Zhao Hua
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Hao-Jie Gao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Nan-Nan Mo
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Min-Can Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Guang-Jian Mei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
10
|
Pan B, Li A, Liu D, Ni Q, Liang W, Du F, Gu J, Ouyang Q. Highly diastereoselective synthesis of benzothiazolo[3,2- a]pyridines via [4 + 2] annulation reaction of 2-vinylbenzothiazoles and azlactones. Org Biomol Chem 2022; 20:4512-4517. [PMID: 35593711 DOI: 10.1039/d2ob00618a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient AgOTf-catalyzed [4 + 2] annulation reaction of 2-vinylbenzothiazoles and azlactones was successfully performed under mild reaction conditions. With this approach, a series of novel benzothiazolo[3,2-a]pyridine derivatives was readily obtained in good to excellent yields (68-96%), with high diastereoselectivities and tolerating quite a broad scope of substituents. By using chiral phosphoric acid catalyst, the desired products were obtained in high enantioselectivities, up to -94%. This methodology provides a rapid and useful method for constructing fused benzothiazole derivatives.
Collapse
Affiliation(s)
- Bin Pan
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Ao Li
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Dong Liu
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - QingShan Ni
- Biomedical Analysis Center, School of Basic Medical Science, Third Military Medical University, Chongqing, 400038, China
| | - Wu Liang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Fei Du
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jing Gu
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| |
Collapse
|
11
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
12
|
Genet M, Takfaoui A, Marrot J, Greck C, Moreau X. Construction of Enantioenriched 4,5,6,7‐Tetrahydrofuro[2,3‐
b
]pyridines through a Multicatalytic Sequence Merging Gold and Amine Catalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Manon Genet
- Institut Lavoisier de Versailles (ILV) Univ. Versailles-St-Quentin-en-Yvelines, Univ Paris Saclay UMR CNRS 8180 78035 Versailles Cedex France
| | - Abdelilah Takfaoui
- Institut Lavoisier de Versailles (ILV) Univ. Versailles-St-Quentin-en-Yvelines, Univ Paris Saclay UMR CNRS 8180 78035 Versailles Cedex France
| | - Jérôme Marrot
- Institut Lavoisier de Versailles (ILV) Univ. Versailles-St-Quentin-en-Yvelines, Univ Paris Saclay UMR CNRS 8180 78035 Versailles Cedex France
| | - Christine Greck
- Institut Lavoisier de Versailles (ILV) Univ. Versailles-St-Quentin-en-Yvelines, Univ Paris Saclay UMR CNRS 8180 78035 Versailles Cedex France
| | - Xavier Moreau
- Institut Lavoisier de Versailles (ILV) Univ. Versailles-St-Quentin-en-Yvelines, Univ Paris Saclay UMR CNRS 8180 78035 Versailles Cedex France
| |
Collapse
|
13
|
Laina-Martín V, Humbrías-Martín J, Mas-Ballesté R, Fernández-Salas JA, Alemán J. Enantioselective Inverse-Electron Demand Aza-Diels-Alder Reaction: ipso,α-Selectivity of Silyl Dienol Ethers. ACS Catal 2021; 11:12133-12145. [PMID: 34621594 PMCID: PMC8491166 DOI: 10.1021/acscatal.1c03390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 12/27/2022]
Abstract
![]()
A highly
efficient enantioselective inverse-electron-demand aza-Diels–Alder
reaction between aza-sulfonyl-1-aza-1,3-butadienes and silyl (di)enol
ethers has been developed. The presented methodology allows the synthesis
of benzofuran-fused 2-piperidinol derivatives with three contiguous
stereocenters in a highly selective manner, as even the hemiaminal
center is completely stereocontrolled. Density functional theory (DFT)
calculations support that the hydrogen-bond donor-based bifunctional
organocatalyst selectively triggers the reaction through the ipso,α-position
of the dienophile, in contrast to the reactivity observed for dienolates
in situ generated from β,γ-unsaturated derivatives. Moreover,
the calculations have clarified the mechanism of the reaction and
the ability of the hydrogen-bond donor core to hydrolyze selectively
the E isomer of the dienol ether. Furthermore, to
demonstrate the applicability of silyl enol ethers as nucleophiles
in the asymmetric synthesis of interesting benzofuran-fused derivatives,
the catalytic system has also been implemented for the highly efficient
installation of an aromatic ring in the piperidine adducts.
Collapse
Affiliation(s)
- Víctor Laina-Martín
- Departamento de Química Orgánica (módulo 1), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Jorge Humbrías-Martín
- Departamento de Química Orgánica (módulo 1), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Rubén Mas-Ballesté
- Departamento de Química Inorgánica (módulo 7), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jose A. Fernández-Salas
- Departamento de Química Orgánica (módulo 1), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Departamento de Química Inorgánica (módulo 7), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José Alemán
- Departamento de Química Orgánica (módulo 1), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Departamento de Química Inorgánica (módulo 7), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
14
|
Laina‐Martín V, Fernández‐Salas JA, Alemán J. Organocatalytic Strategies for the Development of the Enantioselective Inverse-electron-demand Hetero-Diels-Alder Reaction. Chemistry 2021; 27:12509-12520. [PMID: 34132427 PMCID: PMC8456916 DOI: 10.1002/chem.202101696] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 12/20/2022]
Abstract
Cycloaddition reactions, in particular Diels-Alder reactions, have attracted a lot of attention from organic chemists since they represent one of the most powerful methodologies for the construction of carbon-carbon bonds. In particular, inverse-electron-demand hetero-Diels-Alder reactions have been an important breakthrough for the synthesis of heterocyclic compounds. Among all their variants, the organocatalytic enantioselective version has been widely explored since the asymmetric construction of diversely functionalized scaffolds under reaction conditions encompassed within the green chemistry field is of great interest. In this review, a profound revision on the latest advances on the organocatalytic asymmetric inverse-electron demand hetero-Diels-Alder reaction is shown.
Collapse
Affiliation(s)
- Víctor Laina‐Martín
- Departamento de Química Orgánica (módulo 1) Facultad de CienciasUniversidad Autónoma de Madrid28049-MadridSpain
| | - Jose A. Fernández‐Salas
- Departamento de Química Orgánica (módulo 1) Facultad de CienciasUniversidad Autónoma de Madrid28049-MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid28049-MadridSpain
| | - José Alemán
- Departamento de Química Orgánica (módulo 1) Facultad de CienciasUniversidad Autónoma de Madrid28049-MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid28049-MadridSpain
| |
Collapse
|
15
|
Abstract
Organocatalysts are abundantly used for various transformations, particularly to obtain highly enantio- and diastereomeric pure products by controlling the stereochemistry. These applications of organocatalysts have been the topic of several reviews. Organocatalysts have emerged as one of the very essential areas of research due to their mild reaction conditions, cost-effective nature, non-toxicity, and environmentally benign approach that obviates the need for transition metal catalysts and other toxic reagents. Various types of organocatalysts including amine catalysts, Brønsted acids, and Lewis bases such as N-heterocyclic carbene (NHC) catalysts, cinchona alkaloids, 4-dimethylaminopyridine (DMAP), and hydrogen bond-donating catalysts, have gained renewed interest because of their regioselectivity. In this review, we present recent advances in regiodivergent reactions that are governed by organocatalysts. Additionally, we briefly discuss the reaction pathways of achieving regiodivergent products by changes in conditions such as solvents, additives, or the temperature.
Collapse
|
16
|
Hamlin TA, Bickelhaupt FM, Fernández I. The Pauli Repulsion-Lowering Concept in Catalysis. Acc Chem Res 2021; 54:1972-1981. [PMID: 33759502 DOI: 10.1021/acs.accounts.1c00016] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Organic chemistry has undoubtedly had a profound impact on humanity. Day in and day out, we find ourselves constantly surrounded by organic compounds. Pharmaceuticals, plastics, fuels, cosmetics, detergents, and agrochemicals, to name a few, are all synthesized by organic reactions. Very often, these reactions require a catalyst in order to proceed in a timely and selective manner. Lewis acids and organocatalysts are commonly employed to catalyze organic reactions and are considered to enhance the frontier molecular orbital (FMO) interactions. A vast number of textbooks and primary literature sources suggest that the binding of a Lewis acid or an iminium catalyst to a reactant (R1) stabilizes its LUMO and leads to a smaller HOMO(R2)-LUMO(R1) energy gap with the other reactant (R2), thus resulting in a faster reaction. This forms the basis for the so-called LUMO-lowering catalysis concept. Despite the simplicity and popularity of FMO theory, a number of deficiencies have emerged over the years, as a consequence of these FMOs not being the operative factor in the catalysis. LUMO-lowering catalysis is ultimately incomplete and is not always operative in catalyzed organic reactions. Our groups have recently undertaken a concerted effort to generate a unified framework to rationalize and predict chemical reactivity using a causal model that is rooted in quantum mechanics. In this Account, we propose the concept of Pauli repulsion-lowering catalysis to understand the catalysis in fundamental processes in organic chemistry. Our findings emerge from state-of-the-art computational methods, namely, the activation strain model (ASM) of reactivity in conjunction with quantitative Kohn-Sham molecular orbital theory (KS-MO) and a matching energy decomposition analysis (EDA). The binding of the catalyst to the substrate not only leads to a stabilization of its LUMO but also induces a significant reduction of the two-orbital, four-electron Pauli repulsion involving the key molecular orbitals of both reactants. This repulsion-lowering originates, for the textbook Lewis acid-catalyzed Diels-Alder reaction, from the catalyst polarizing the occupied π orbital of the dienophile away from the carbon atoms that form new bonds with the diene. This polarization of the occupied dienophile π orbital reduces the occupied orbital overlap with the diene and constitutes the ultimate physical factor responsible for the acceleration of the catalyzed process as compared to the analogous uncatalyzed reaction. We show that this physical mechanism is generally applicable regardless of the type of reaction (Diels-Alder and Michael addition reactions) and the way the catalyst is bonded to the reactants (i.e., from pure covalent or dative bonds to weaker hydrogen or halogen bonds). We envisage that the insights emerging from our analysis will guide future experimental developments toward the design of more efficient catalytic transformations.
Collapse
Affiliation(s)
- Trevor A. Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEOCINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
17
|
Vermeeren P, Hamlin TA, Bickelhaupt FM, Fernández I. Bifunctional Hydrogen Bond Donor-Catalyzed Diels-Alder Reactions: Origin of Stereoselectivity and Rate Enhancement. Chemistry 2021; 27:5180-5190. [PMID: 33169912 PMCID: PMC8049058 DOI: 10.1002/chem.202004496] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 11/11/2022]
Abstract
The selectivity and rate enhancement of bifunctional hydrogen bond donor-catalyzed Diels-Alder reactions between cyclopentadiene and acrolein were quantum chemically studied using density functional theory in combination with coupled-cluster theory. (Thio)ureas render the studied Diels-Alder cycloaddition reactions exo selective and induce a significant acceleration of this process by lowering the reaction barrier by up to 7 kcal mol-1 . Our activation strain and Kohn-Sham molecular orbital analyses uncover that these organocatalysts enhance the Diels-Alder reactivity by reducing the Pauli repulsion between the closed-shell filled π-orbitals of the diene and dienophile, by polarizing the π-orbitals away from the reactive center and not by making the orbital interactions between the reactants stronger. In addition, we establish that the unprecedented exo selectivity of the hydrogen bond donor-catalyzed Diels-Alder reactions is directly related to the larger degree of asynchronicity along this reaction pathway, which is manifested in a relief of destabilizing activation strain and Pauli repulsion.
Collapse
Affiliation(s)
- Pascal Vermeeren
- Department of Theoretical ChemistryAmsterdam Institute of, Molecular and Life Sciences (AIMMS)Amsterdam Center for, Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
| | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of, Molecular and Life Sciences (AIMMS)Amsterdam Center for, Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Institute of, Molecular and Life Sciences (AIMMS)Amsterdam Center for, Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
- Institute for Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| | - Israel Fernández
- Departamento de Química Orgánica ICentro de Innovación, en Química Avanzada (ORFEO-CINQA)Facultad de Ciencias QuímicasUniversidad Complutense de Madrid28040MadridSpain
| |
Collapse
|
18
|
Chen T, Che C, Guo Z, Dong XQ, Wang CJ. Diastereoselective synthesis of functionalized tetrahydropyridazines containing indole scaffolds via an inverse-electron-demand aza-Diels–Alder reaction. Org Chem Front 2021. [DOI: 10.1039/d1qo00623a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A base-promoted and catalyst-free unprecedented inverse-electron-demand aza-Diels–Alder reaction between the in situ generated azoalkenes and 3-vinylindoles has been developed to afford tetrahydropyridazines containing indole scaffolds.
Collapse
Affiliation(s)
- Taotao Chen
- Engineering Research Centre of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
| | - Chao Che
- Engineering Research Centre of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
| | - Zhefei Guo
- Engineering Research Centre of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
| | - Xiu-Qin Dong
- Engineering Research Centre of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
| | - Chun-Jiang Wang
- Engineering Research Centre of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
| |
Collapse
|
19
|
Koay WL, Mei GJ, Lu Y. Facile access to benzofuran-fused tetrahydropyridines via catalytic asymmetric [4 + 2] cycloaddition of aurone-derived 1-azadienes with 3-vinylindoles. Org Chem Front 2021. [DOI: 10.1039/d0qo01236j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly enantioselective [4 + 2] cycloaddition reaction of 1-azadienes with 3-vinylindoles, catalyzed by chiral phosphoric acid has been developed to furnish a range of benzofuran-fused tetrahydropyridines with three contiguous stereogenic centers.
Collapse
Affiliation(s)
- Wai Lean Koay
- Department of Chemistry
- National University of Singapore
- Singapore
- NUS Graduate School for Integrative Sciences & Engineering (NGS)
- National University of Singapore
| | - Guang-Jian Mei
- Department of Chemistry
- National University of Singapore
- Singapore
| | - Yixin Lu
- Department of Chemistry
- National University of Singapore
- Singapore
- NUS Graduate School for Integrative Sciences & Engineering (NGS)
- National University of Singapore
| |
Collapse
|
20
|
Gold(I)-Catalyzed Domino Reaction for Furopyrans Synthesis. Molecules 2020; 25:molecules25214976. [PMID: 33121149 PMCID: PMC7663467 DOI: 10.3390/molecules25214976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/04/2022] Open
Abstract
We report herein an efficient synthesis of furopyran derivatives through a gold(I)-catalyzed domino reaction. The cascade reaction starts with two regioselective cyclizations, a 5-endo-dig and a 8-endo-dig, followed with a Grob-type fragmentation and a hetero Diels–Alder. The obtained furopyran derivatives contain fused and spiro-heterocycles. During this one-pot process, four bonds and four controlled stereogenic centers including a quaternary center are formed.
Collapse
|