1
|
Xie H, Gao X, Dong B, Wang H, Spokoyny AM, Mu X. Electrochemical deconstruction of alkyl substituted boron clusters to produce alkyl boronate esters. Chem Commun (Camb) 2024; 60:11548-11551. [PMID: 39311548 DOI: 10.1039/d4cc04232h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Closo-Hexaborate (closo-B6H62-) can engage in nucleophilic substitution reactions with a wide variety of alkyl electrophiles. The resulting functionalized boron clusters undergo oxidative electrochemical deconstruction, selectively cleaving B-B bonds while preserving B-C bonds in these species. This approach allows the conversion of multinuclear boron clusters into single boron site organoboranes. Trapped boron-based fragments were isolated from the electrochemical cluster deconstruction process, providing further mechanistic insights into the developed reaction.
Collapse
Affiliation(s)
- Huanhuan Xie
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China.
| | - Xinying Gao
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China.
| | - Beibei Dong
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China.
| | - Haoyang Wang
- Laboratory of Mass Spectrometry Analysis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Xin Mu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China.
| |
Collapse
|
2
|
Meng CF, Zhang BB, Liu Q, Chen KQ, Wang ZX, Chen XY. Achieving Nickel-Catalyzed Reductive C(sp 2)-B Coupling of Bromoboranes via Reversing the Activation Sequence. J Am Chem Soc 2024; 146:7210-7215. [PMID: 38437461 DOI: 10.1021/jacs.4c01450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Transition metal-catalyzed reductive cross-couplings to build C-C/Si bonds have been developed, but the reductive cross-coupling to create the C(sp2)-B bond has not been explored. Herein, we describe a nickel-catalyzed reductive cross-coupling between aryl halides and bromoboranes to construct a C(sp2)-B bond. This protocol offers a convenient approach for the synthesis of a wide range of aryl boronate esters, using readily available starting materials. Mechanistic studies indicate that the key to the success of the reaction is the activation of the B-Br bond of bromoboranes with a Lewis base such as 2-MeO-py. The activation ensures that bromoboranes will react with the active nickel(I) catalyst prior to aryl halides, which is different from the sequence of the general nickel-catalyzed reductive C(sp2)-C/Si cross-coupling, where the oxidative addition of an aryl halide proceeds first. Notably, this approach minimizes the production of undesired homocoupling byproduct without the requirement of excessive quantities of either substrate.
Collapse
Affiliation(s)
- Chun-Fu Meng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun-Quan Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| |
Collapse
|
3
|
Matsuo K, Yamaguchi E, Itoh A. Halogen-Bonding-Promoted Photoinduced C-X Borylation of Aryl Halide Using Phenol Derivatives. J Org Chem 2023; 88:6176-6181. [PMID: 37083371 DOI: 10.1021/acs.joc.3c00201] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
This study investigates the photoinduced C-X borylation reaction of aryl halides by forming a halogen-bonding (XB) complex using 2-naphthol as an XB acceptor. The method is chemoselective and broadly functional group tolerant and provides concise access to corresponding boronate esters. Mechanistic studies reveal that forming the XB complex between aryl halide and naphthol acts as an electron donor-acceptor complex to furnish aryl radicals through photoinduced electron transfer.
Collapse
Affiliation(s)
- Kazuki Matsuo
- Laboratory of Pharmaceuticals Synthetic, Gifu Pharmaceutical University 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Eiji Yamaguchi
- Laboratory of Pharmaceuticals Synthetic, Gifu Pharmaceutical University 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Akichika Itoh
- Laboratory of Pharmaceuticals Synthetic, Gifu Pharmaceutical University 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
4
|
Qiu CS, Qiu NP, Flinn C, Zhao Y. DFT mechanistic studies of boron-silicon exchange reactions between silyl-substituted arenes and boron bromides. Phys Chem Chem Phys 2023; 25:6714-6725. [PMID: 36805579 DOI: 10.1039/d2cp05615a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
C-B bond forming reactions are important methodologies in modern synthetic chemistry, since many borylated organic substrates, ranging from alkanes and alkenes to arenes and heteroarenes, are useful intermediates for the synthesis of natural products, pharmaceuticals, and organic π-conjugated materials. Among numerous borylation methods, C-Si/B-Br exchange reactions have attracted increasing attention in recent years. While experimental exploration has been continually carried out for more than two decades, mechanistic insights into this type of reaction have not yet been clearly established. To address this deficiency of knowledge, we performed density functional theory (DFT) calculations to map out the reaction pathways for a range of boron-silicon exchange reactions between boron tribromide (BBr3) and trimethylsilyl-substituted arenes (TMSAr). Our computational analyses have disclosed the energetic, structural, and electronic properties for key stationary points on the potential energy surfaces (PES) in both the gas and solution (CH2Cl2) phases.
Collapse
Affiliation(s)
- Christopher S Qiu
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Nicholas P Qiu
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Christopher Flinn
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Yuming Zhao
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
5
|
Metal-Free One-Pot Multi-Functionalization of Unsaturated Compounds with Interelement Compounds by Radical Process. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020787. [PMID: 36677845 PMCID: PMC9861539 DOI: 10.3390/molecules28020787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023]
Abstract
In recent years, the importance of "environmentally friendly manufacturing" has been increasing toward the establishment of a resource-recycling society. In organic synthesis, as well, it is becoming increasingly important to develop new synthetic strategies with resource conservation and the recycling of elemental resources in mind, rather than just only synthesis. Many studies on the construction of frameworks of functional molecules using ionic reactions and transition-metal-catalyzed reactions have been reported, but most of them have focused on the formation of carbon-carbon bonds. However, it is essential to introduce appropriate functional groups at appropriate positions in molecules in order for the molecules to express their functions, and furthermore, the highly selective preparation of multiple functional groups is considered important for the creation of new functional molecules. In this review, we focus on radical reactions with high functional group selectivity and overview the recent progress in practical methods for the simultaneous introduction of multiple functional groups and propose future synthetic strategies that emphasize the recycling of elemental resources and environmental friendliness.
Collapse
|
6
|
Shang P, Yan X, Li Y, Liu J, Zhang G, Chen L. Heterogeneous photocatalytic borylation of aryl iodides mediated by isoreticular 2D covalent organic frameworks. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Al-Marhabi AR, El-Shishtawy RM, Al-Footy KO. Synthesis and optical properties of novel key electron donors-based pinacol boronate ester derived from phenothiazine, phenoxazine and carbazole. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Abstract
The direct C–S borylation of aryl sulfides with B2pin2 has been achieved via a transition-metal-free photochemical process. With blue LED irradiation, aryl sulfides with various functional groups were converted to...
Collapse
|
9
|
Ji S, Qin S, Yin C, Luo L, Zhang H. Unreactive C-N Bond Activation of Anilines via Photoinduced Aerobic Borylation. Org Lett 2021; 24:64-68. [PMID: 34898225 DOI: 10.1021/acs.orglett.1c03590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Unreactive C-N bond activation of anilines was achieved by photoinduced aerobic borylation. A diverse range of tertiary and secondary anilines were converted to aryl boronate esters in moderate to good yields with wide functional group tolerance under simple and ambient photochemical conditions. This transformation achieved the direct and facile C-N bond activation of unreactive anilines, providing a convenient and practical route transforming widely available anilines into useful aryl boronate esters.
Collapse
Affiliation(s)
- Shuohan Ji
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.,College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Shengxiang Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.,College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Chunyu Yin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Lu Luo
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Hua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.,College of Chemistry, Nanchang University, Nanchang 330031, China
| |
Collapse
|
10
|
Hayes HLD, Wei R, Assante M, Geogheghan KJ, Jin N, Tomasi S, Noonan G, Leach AG, Lloyd-Jones GC. Protodeboronation of (Hetero)Arylboronic Esters: Direct versus Prehydrolytic Pathways and Self-/Auto-Catalysis. J Am Chem Soc 2021; 143:14814-14826. [PMID: 34460235 DOI: 10.1021/jacs.1c06863] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The kinetics and mechanism of the base-catalyzed hydrolysis (ArB(OR)2 → ArB(OH)2) and protodeboronation (ArB(OR)2 → ArH) of a series of boronic esters, encompassing eight different polyols and 10 polyfluoroaryl and heteroaryl moieties, have been investigated by in situ and stopped-flow NMR spectroscopy (19F, 1H, and 11B), pH-rate dependence, isotope entrainment, 2H KIEs, and KS-DFT computations. The study reveals the phenomenological stability of boronic esters under basic aqueous-organic conditions to be highly nuanced. In contrast to common assumption, esterification does not necessarily impart greater stability compared to the corresponding boronic acid. Moreover, hydrolysis of the ester to the boronic acid can be a dominant component of the overall protodeboronation process, augmented by self-, auto-, and oxidative (phenolic) catalysis when the pH is close to the pKa of the boronic acid/ester.
Collapse
Affiliation(s)
- Hannah L D Hayes
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Ran Wei
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Michele Assante
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| | - Katherine J Geogheghan
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Na Jin
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Simone Tomasi
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Gary Noonan
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Andrew G Leach
- School of Health Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| | - Guy C Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
11
|
Abstract
Interaction of sulfides bearing a tetrafluoropyridinyl group with bis(catecholato)diboron followed by treatment with pinacol and triethylamine affording pinacol boronic esters is described. The reaction is promoted by an organic photocatalyst (3DPA2FBN) under irradiation with 400 nm light, and works with primary, secondary, and tertiary sulfides. The electron depleting character of the fluorinated pyridine fragment plays an important role in generating alkyl radicals.
Collapse
Affiliation(s)
- Liubov I Panferova
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| |
Collapse
|
12
|
Tian YM, Guo XN, Braunschweig H, Radius U, Marder TB. Photoinduced Borylation for the Synthesis of Organoboron Compounds. Chem Rev 2021; 121:3561-3597. [PMID: 33596057 DOI: 10.1021/acs.chemrev.0c01236] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organoboron compounds have important synthetic value and can be applied in numerous transformations. The development of practical and convenient ways to synthesize boronate esters has thus attracted significant interest. Photoinduced borylations originated from stoichiometric reactions of alkanes and arenes with well-defined metal-boryl complexes. Now, photoredox-initiated borylations, catalyzed by either transition metal or organic photocatalysts, and photochemical borylations with high efficiency have become a burgeoning area of research. In this Focus Review, we summarize research on photoinduced borylations, especially emphasizing recent developments and trends. This includes the photoinduced borylation of arenes, alkanes, aryl/alkyl halides, activated carboxylic acids, amines, alcohols, and so on based on transition metal catalysis, metal-free organocatalysis, and direct photochemical activation. We focus on reaction mechanisms involving single-electron transfer, triplet-energy transfer, and other radical processes.
Collapse
Affiliation(s)
- Ya-Ming Tian
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Xiao-Ning Guo
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Todd B Marder
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
13
|
Lai D, Ghosh S, Hajra A. Light-induced borylation: developments and mechanistic insights. Org Biomol Chem 2021; 19:4397-4428. [PMID: 33913460 DOI: 10.1039/d1ob00323b] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Organoboron compounds are very important derivatives because of their profound impacts on medicinal, biological as well as industrial applications. The development of several novel borylation methodologies has achieved momentous interest among synthetic chemists. In this scenario, eco-friendly light-induced borylation is progressively becoming one of the best synthetic tools in recent days to prepare organoboronic ester and acid derivatives based on green chemistry rules. In this article, we have discussed all the UV- and visible-light-induced borylation strategies developed in the last decade. Furthermore, special attention is given to the mechanisms of these borylation methodologies for better understanding of reaction insights.
Collapse
Affiliation(s)
- Dipti Lai
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| |
Collapse
|