1
|
Zhao Z, Dong W, Liu J, Yang S, Cotman AE, Zhang Q, Fang X. Catalytic Asymmetric Transfer Hydrogenation of β,γ-Unsaturated α-Diketones. J Am Chem Soc 2024; 146:33543-33560. [PMID: 39604061 DOI: 10.1021/jacs.4c11070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Asymmetric transfer hydrogenation (ATH) has been recognized as a highly valuable strategy that allows access to enantioenriched substances and has been widely applied in the industrial production of drug molecules. However, despite the great success in ATH of ketones, highly efficient, regio- and stereoselective ATH on enones remains underdeveloped. Moreover, optically pure acyloins and 1,2-diols are both extremely useful building blocks in organic synthesis, medicinal chemistry, and materials science, but concise asymmetric approaches allowing access to different types of acyloins and 1,2-diols have scarcely been discovered. We report in this paper the first highly efficient ATH of readily accessible β,γ-unsaturated α-diketones. The protocol affords four types of enantioenriched acyloins and four types of optically pure 1,2-diols in highly regio- and stereoselective fashion. The synthetic value of this work has been showcased by the divergent synthesis of four related natural products. Moreover, systematic mechanistic studies and density functional theory (DFT) calculations have illustrated the origin of the reactivity divergence, revealed the different roles of aromatic and aliphatic substituents in the substrates, and provided a range of unique mechanistic rationales that have not been disclosed in ATH-related studies.
Collapse
Affiliation(s)
- Zhifei Zhao
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wennan Dong
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
2
|
Wolder A, Heckmann CM, Hagedoorn PL, Opperman DJ, Paul CE. Asymmetric Monoreduction of α,β-Dicarbonyls to α-Hydroxy Carbonyls by Ene Reductases. ACS Catal 2024; 14:15713-15720. [PMID: 39444529 PMCID: PMC11494505 DOI: 10.1021/acscatal.4c04676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Ene reductases (EREDs) catalyze asymmetric reduction with exquisite chemo-, stereo-, and regioselectivity. Recent discoveries led to unlocking other types of reactivities toward oxime reduction and reductive C-C bond formation. Exploring nontypical reactions can further expand the biocatalytic knowledgebase, and evidence alludes to yet another variant reaction where flavin mononucleotide (FMN)-bound ERs from the old yellow enzyme family (OYE) have unconventional activity with α,β-dicarbonyl substrates. In this study, we demonstrate the nonconventional stereoselective monoreduction of α,β-dicarbonyl to the corresponding chiral hydroxycarbonyl, which are valuable building blocks for asymmetric synthesis. We explored ten α,β-dicarbonyl aliphatic, cyclic, or aromatic compounds and tested their reduction with five OYEs and one nonflavin-dependent double bond reductase (DBR). Only GluER reduced aliphatic α,β-dicarbonyls, with up to 19% conversion of 2,3-hexanedione to 2-hydroxyhexan-3-one with an R-selectivity of 83% ee. The best substrate was the aromatic α,β-dicarbonyl 1-phenyl-1,2-propanedione, with 91% conversion to phenylacetylcarbinol using OYE3 with R-selectivity >99.9% ee. Michaelis-Menten kinetics for 1-phenyl-1,2-propanedione with OYE3 gave a turnover k cat of 0.71 ± 0.03 s-1 and a K m of 2.46 ± 0.25 mM. Twenty-four EREDs from multiple classes of OYEs and DBRs were further screened on 1-phenyl-1,2-propanedione, showing that class II OYEs (OYE3-like) have the best overall selectivity and conversion. EPR studies detected no radical signal, whereas NMR studies with deuterium labeling indicate proton incorporation at the benzylic carbonyl carbon from the solvent and not the FMN hydride. A crystal structure of OYE2 with 1.5 Å resolution was obtained, and docking studies showed a productive pose with the substrate.
Collapse
Affiliation(s)
- Allison
E. Wolder
- Biocatalysis
section, Department of Biotechnology, Delft
University of Technology, van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Christian M. Heckmann
- Biocatalysis
section, Department of Biotechnology, Delft
University of Technology, van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Peter-Leon Hagedoorn
- Biocatalysis
section, Department of Biotechnology, Delft
University of Technology, van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Diederik J. Opperman
- Department
of Microbiology and Biochemistry, University
of the Free State, Bloemfontein 9300, South Africa
| | - Caroline E. Paul
- Biocatalysis
section, Department of Biotechnology, Delft
University of Technology, van der Maasweg 9, Delft 2629 HZ, the Netherlands
| |
Collapse
|
3
|
Dourado DFAR, Rowan AS, Maciuk S, Brown G, Gray D, Spratt J, Carvalho ATP, Pavlović D, Tur F, Caswell J, Quinn DJ, Moody TS, Mix S. Application of rational enzyme engineering in a new route to etonogestrel and levonorgestrel: carbonyl reductase bioreduction of ethyl secodione. Faraday Discuss 2024; 252:450-467. [PMID: 38864241 DOI: 10.1039/d4fd00011k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Women in developing countries still face enormous challenges when accessing reproductive health care. Access to voluntary family planning empowers women allowing them to complete their education and join the paid workforce. This effectively helps to end poverty, hunger and promotes good health for all. According to the United Nations (UN) organization, in 2022, an estimated 257 million women still lacked access to safe and effective family planning methods globally. One of the main barriers is the associated cost of modern contraceptive methods. Funded by the Bill & Melinda Gates Foundation, Almac Group worked on the development of a novel biocatalytic route to etonogestrel and levonorgestrel, two modern contraceptive APIs, with the goal of substantially decreasing the cost of production and so enabling their use in developing nations. This present work combines the selection and engineering of a carbonyl reductase (CRED) enzyme from Almac's selectAZyme™ panel, with process development, to enable efficient and economically viable bioreduction of ethyl secodione to (13R,17S)-secol, the key chirality introducing intermediate en route to etonogestrel and levonorgestrel API. CRED library screening returned a good hit with an Almac CRED from Bacillus weidmannii, which allowed for highly stereoselective bioreduction at low enzyme loading of less than 1% w/w under screening assay conditions. However, the only co-solvent tolerated was DMSO up to ∼30% v/v, and it was impossible to achieve reaction completion with any enzyme loading at substrate titres of 20 g L-1 and above, due to the insolubility of the secodione. This triggered a rapid enzyme engineering program fully based on computational mutant selection. A small panel of 93 CRED mutants was rationally designed to increase the catalytic activity as well as thermal and solvent stability. The best mutant, Mutant-75, enabled a reaction at 45 °C to go to completion at 90 g L-1 substrate titre in a buffer/DMSO/heptane reaction medium fed over 6 h with substrate DMSO stock solution, with a low enzyme loading of 3.5% w/w wrt substrate. In screening assay conditions, Mutant-75 also showed a 2.2-fold activity increase. Our paper shows which computations and rational decisions enabled this outcome.
Collapse
Affiliation(s)
| | - Andrew S Rowan
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, UK.
| | - Sergej Maciuk
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, UK.
| | - Gareth Brown
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, UK.
| | - Darren Gray
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, UK.
| | - Jenny Spratt
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, UK.
| | | | - Dražen Pavlović
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, UK.
| | - Fernando Tur
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, UK.
| | - Jill Caswell
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, UK.
| | - Derek J Quinn
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, UK.
| | - Thomas S Moody
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, UK.
| | - Stefan Mix
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, UK.
| |
Collapse
|
4
|
Liu W, Ren C, Zhou L, Luo H, Meng X, Luo P, Luo Y, Dong W, Lan S, Liu J, Yang S, Zhang Q, Fang X. Regio- and Stereoselective Transfer Hydrogenation of Aryloxy Group-Substituted Unsymmetrical 1,2-Diketones: Synthetic Applications and Mechanistic Studies. J Am Chem Soc 2024; 146:20092-20106. [PMID: 39007870 DOI: 10.1021/jacs.4c04171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Developing a general method that leads to the formation of different classes of chiral bioactive compounds and their stereoisomers is an attractive but challenging research topic in organic synthesis. Furthermore, despite the great value of asymmetric transfer hydrogenation (ATH) in both organic synthesis and the pharmaceutical industry, the monohydrogenation of unsymmetrical 1,2-diketones remains underdeveloped. Here, we report the aryloxy group-assisted highly regio-, diastereo-, and enantioselective ATH of racemic 1,2-diketones. The work produces a myriad of enantioenriched dihydroxy ketones, and further transformations furnish all eight stereoisomers of diaryl triols, polyphenol, emblirol, and glycerol-type natural products. Mechanistic studies and calculations reveal two working modes of the aryloxy group in switching the regioselectivity from a more reactive carbonyl to a less reactive one, and the potential of ATH on 1,2-diketones in solving challenging synthetic issues has been clearly demonstrated.
Collapse
Affiliation(s)
- Wenjun Liu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Caiyi Ren
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Liyuan Zhou
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350108, China
| | - Haotian Luo
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xiangjian Meng
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Peng Luo
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Yingkun Luo
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wennan Dong
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Shouang Lan
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
5
|
Wang L, Lv J, Zhang Y, Yang D. Asymmetric magnesium catalysis for important chiral scaffold synthesis. Org Biomol Chem 2024; 22:4778-4800. [PMID: 38809153 DOI: 10.1039/d4ob00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Magnesium catalysts are widely used in catalytic asymmetric reactions, and a series of catalytic strategies have been developed in recent years. Herein, in this review, we have tried to summarize asymmetric magnesium catalysis for the synthesis of important chiral scaffolds. Several important optically active motifs that are present in classic chiral ligands or natural products synthesized by Mg(II) catalytic methods are briefly discussed. Moreover, the representative mechanisms for different magnesium catalytic strategies, including in situ generated magnesium catalysts, are also shown in relation to synthetic routes for obtaining these important chiral scaffolds.
Collapse
Affiliation(s)
- Linqing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Jiaming Lv
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Yongshuo Zhang
- Scientific Research and Innovation Expert Studio of China Inspection and Certification Group Liaoning Co., Ltd, Dalian, 116039, China
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Chen M, Zhu L, Zheng W, Fu Y, Zhang J, He H, Antilla JC. Catalytic Asymmetric Desymmetrization of Cyclic 1,3-Diketones Using Chiral Boro-phosphates. Org Lett 2024; 26:3951-3956. [PMID: 38678546 DOI: 10.1021/acs.orglett.4c01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Herein, we report a chiral boro-phosphate-catalyzed reductive amination for the desymmetrization of 2,2-disubstituted 1,3-cyclopentadiones with pinacolborane as the reducing agent, delivering chiral β-amino ketones with an all-carbon quaternary stereocenter in good yields (≤94%), high enantioselectivities (≤97% ee), and excellent diastereoselectivities (>20:1 dr). This reaction has a broad substrate scope and high functional group tolerance. The importance of the chiral products was also demonstrated through the preparation of multifunctional building blocks and heterocycles.
Collapse
Affiliation(s)
- Minglei Chen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Linfei Zhu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Weitao Zheng
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Yili Fu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Junru Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Hualing He
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Jon C Antilla
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| |
Collapse
|
7
|
Lan S, Huang H, Liu W, Xu C, Lei X, Dong W, Liu J, Yang S, Cotman AE, Zhang Q, Fang X. Asymmetric Transfer Hydrogenation of Cyclobutenediones. J Am Chem Soc 2024; 146:4942-4957. [PMID: 38326715 DOI: 10.1021/jacs.3c14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Four-membered carbocycles are fundamental substructures in bioactive molecules and approved drugs and serve as irreplaceable building blocks in organic synthesis. However, developing efficient protocols furnishing diversified four-membered ring compounds in a highly regio-, diastereo-, and enantioselective fashion remains challenging but very desirable. Here, we report the unprecedented asymmetric transfer hydrogenation of cyclobutenediones. The reaction can selectively afford three types of four-membered products in high yields with high stereoselectivities, and the highly functionalized products enable a series of further transformations to form more diversified four-membered compounds. Asymmetric synthesis of di-, tri-, and tetrasubstituted bioactive molecules has also been achieved. Systematic mechanistic studies and theoretical calculations have revealed the origin of the regioselectivity, the key hydrogenation transition state models, and the sequence of the double and triple hydrogenation processes. The work provides a new choice for the catalytic asymmetric synthesis of cyclobutanes and related structures and demonstrates the robustness of asymmetric transfer hydrogenation in the accurate selectivity control of highly functionalized substrates.
Collapse
Affiliation(s)
- Shouang Lan
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Huangjiang Huang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350108, China
| | - Wenjun Liu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Chao Xu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xiang Lei
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wennan Dong
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
8
|
Yus M, Nájera C, Foubelo F, Sansano JM. Metal-Catalyzed Enantioconvergent Transformations. Chem Rev 2023; 123:11817-11893. [PMID: 37793021 PMCID: PMC10603790 DOI: 10.1021/acs.chemrev.3c00059] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 10/06/2023]
Abstract
Enantioconvergent catalysis has expanded asymmetric synthesis to new methodologies able to convert racemic compounds into a single enantiomer. This review covers recent advances in transition-metal-catalyzed transformations, such as radical-based cross-coupling of racemic alkyl electrophiles with nucleophiles or racemic alkylmetals with electrophiles and reductive cross-coupling of two electrophiles mainly under Ni/bis(oxazoline) catalysis. C-H functionalization of racemic electrophiles or nucleophiles can be performed in an enantioconvergent manner. Hydroalkylation of alkenes, allenes, and acetylenes is an alternative to cross-coupling reactions. Hydrogen autotransfer has been applied to amination of racemic alcohols and C-C bond forming reactions (Guerbet reaction). Other metal-catalyzed reactions involve addition of racemic allylic systems to carbonyl compounds, propargylation of alcohols and phenols, amination of racemic 3-bromooxindoles, allenylation of carbonyl compounds with racemic allenolates or propargyl bromides, and hydroxylation of racemic 1,3-dicarbonyl compounds.
Collapse
Affiliation(s)
- Miguel Yus
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Carmen Nájera
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Francisco Foubelo
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - José M. Sansano
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| |
Collapse
|
9
|
Chen ZY, Yang MW, Wang ZL, Xu YH. Copper-Catalyzed Enantioselective Desymmetric Protosilylation of Prochiral Diynes: Access to Optically Functionalized Tertiary Alcohols. Org Lett 2023. [PMID: 37418590 DOI: 10.1021/acs.orglett.3c01702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
In this protocol, a copper-catalyzed desymmetric protosilylation of prochiral diynes was developed. The corresponding products were obtained in moderate to high yields and enantiomeric ratios. This approach provides a simple method for synthesizing functionalized chiral tertiary alcohols in the presence of a chiral pyridine-bisimidazoline (Pybim) ligand.
Collapse
Affiliation(s)
- Zhi-Yuan Chen
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Meng-Wei Yang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zi-Lu Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
10
|
Wang X, Xue J, Rong ZQ. Divergent Access to Chiral C2- and C3-Alkylated Pyrrolidines by Catalyst-Tuned Regio- and Enantioselective C(sp 3)-C(sp 3) Coupling. J Am Chem Soc 2023. [PMID: 37307532 DOI: 10.1021/jacs.3c03900] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Novel-substituted pyrrolidine derivatives are widely used in drugs and bioactive molecules. The efficient synthesis of these valuable skeletons, especially enantiopure derivatives, is still recognized as a key bottleneck to overcome in chemical synthesis. Herein, we report a highly efficient catalyst-tuned regio- and enantioselective hydroalkylation reaction for the divergent synthesis of chiral C2- and C3-alkylated pyrrolidines through desymmetrization of the readily available 3-pyrrolines. The catalytic system consists of CoBr2 with a modified bisoxazoline (BOX) ligand, which can achieve the asymmetric C(sp3)-C(sp3) coupling via the distal stereocontrol, providing a series of C3-alkylated pyrrolidines in high efficiency. Moreover, the nickel catalytic system allows the enantioselective hydroalkylation to synthesize the C2-alkylated pyrrolidines through the tandem alkene isomerization/hydroalkylation reaction. This divergent method uses readily available catalysts, chiral BOX ligands, and reagents, delivering enantioenriched 2-/3-alkyl substituted pyrrolidines with excellent regio- and enantioselectivity (up to 97% ee). We also demonstrate the compatibility of this transformation with complex substrates derived from a series of drugs and bioactive molecules in good efficiency, which offers a distinct entry to more functionalized chiral N-heterocycles.
Collapse
Affiliation(s)
- Xuchao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Jing Xue
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| |
Collapse
|
11
|
Lv T, Feng J, Chen X, Luo Y, Wu Q, Zhu D, Ma Y. Desymmetric Reductive Amination of 1,3-Cyclopentadiones to Single Stereoisomer of β-Amino Ketones with an All-Carbon Quaternary Stereocenter by Engineered Amine Dehydrogenases. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
12
|
Hou X, Xu H, Yuan Z, Deng Z, Fu K, Gao Y, Liu C, Zhang Y, Rao Y. Structural analysis of an anthrol reductase inspires enantioselective synthesis of enantiopure hydroxycycloketones and β-halohydrins. Nat Commun 2023; 14:353. [PMID: 36681664 PMCID: PMC9867772 DOI: 10.1038/s41467-023-36064-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
Asymmetric reduction of prochiral ketones, particularly, reductive desymmetrization of 2,2-disubstituted prochiral 1,3-cyclodiketones to produce enantiopure chiral alcohols is challenging. Herein, an anthrol reductase CbAR with the ability to accommodate diverse bulky substrates, like emodin, for asymmetric reduction is identified. We firstly solve crystal structures of CbAR and CbAR-Emodin complex. It reveals that Tyr210 is critical for emodin recognition and binding, as it forms a hydrogen-bond interaction with His162 and π-π stacking interactions with emodin. This ensures the correct orientation for the stereoselectivity. Then, through structure-guided engineering, variant CbAR-H162F can convert various 2,2-disubstituted 1,3-cyclodiketones and α-haloacetophenones to optically pure (2S, 3S)-ketols and (R)-β-halohydrins, respectively. More importantly, their stereoselectivity mechanisms are also well explained by the respective crystal structures of CbAR-H162F-substrate complex. Therefore, this study demonstrates that an in-depth understanding of catalytic mechanism is valuable for exploiting the promiscuity of anthrol reductases to prepare diverse enantiopure chiral alcohols.
Collapse
Affiliation(s)
- Xiaodong Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Huibin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Kai Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yue Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Changmei Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China.
| |
Collapse
|
13
|
Xu P, Shen C, Xu A, Low K, Huang Z. Desymmetric Cyanosilylation of Acyclic 1,3‐Diketones. Angew Chem Int Ed Engl 2022; 61:e202208443. [DOI: 10.1002/anie.202208443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Pan Xu
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| | - Chang Shen
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| | - Aiqing Xu
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| | - Kam‐Hung Low
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| | - Zhongxing Huang
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| |
Collapse
|
14
|
Xu P, Shen C, Xu A, Low KH, Huang Z. Desymmetric Cyanosilylation of Acyclic 1,3‐Diketones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pan Xu
- University of Hong Kong Department of Chemistry HONG KONG
| | - Chang Shen
- University of Hong Kong Department of Chemistry HONG KONG
| | - Aiqing Xu
- University of Hong Kong Department of Chemistry HONG KONG
| | - Kam-Hung Low
- University of Hong Kong Department of Chemistry HONG KONG
| | - Zhongxing Huang
- University of Hong Kong Chemistry RM 608 Chong Yuet Ming Chemistry Building na Hong Kong HONG KONG
| |
Collapse
|
15
|
Construction of boron-stereogenic compounds via enantioselective Cu-catalyzed desymmetric B-H bond insertion reaction. Nat Commun 2022; 13:2624. [PMID: 35552397 PMCID: PMC9098526 DOI: 10.1038/s41467-022-30287-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/21/2022] [Indexed: 01/15/2023] Open
Abstract
Compared with the well-developed carbon-stereogenic chemistry, the construction of boron-stereogenic compounds remains undeveloped and challenging. Herein, the previously elusive catalytic enantioselective construction of boron-stereogenic compounds has been achieved through enantioselective desymmetric B-H bond insertion reaction. The B-H bond insertion reaction of 2-arylpyridine-boranes with versatile diazo compounds under chiral copper catalyst can afford boron-stereogenic compounds with good to excellent enantioselectivity. Moreover, the synthetic utility of this reaction is demonstrated by the scalability and downstream transformations. DFT calculations provide insights into the reaction mechanism and the origin of stereoselectivity.
Collapse
|
16
|
Qin XL, Wu GJ, Han FS. Synthetic Studies on the Synthesis of Toxicodenane A and 8,11- epi-Toxicodenane A. J Org Chem 2022; 87:3223-3233. [PMID: 35041787 DOI: 10.1021/acs.joc.1c02928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The diverse synthesis of oxatricyclotridecanes and oxatricyclododecanes, which are the core structures of toxicodenane A and its skeletal analogues, via a unified manner is presented. The stereochemistry at the bridgehead position of the oxa-bridged bicycle could be efficiently controlled through a diastereoselective anti- and syn-Grignard allylation reaction by appropriately tuning the reaction conditions such as the solvent, the counterion of the Grignard reagent, the substrate, or a combination of these. The ring size could be precisely elaborated via a Lewis acid-mediated intramolecular transacetalation and Prins cyclization cascade reaction by varying the steric hindrance of olefin moiety. Namely, substrates bearing a terminally unsubstituted olefinic functionality afforded oxatricyclotridecanes with an overwhelming preference, while those bearing a dimethyl-substituted olefinic group produced exclusively oxatricyclododecanes. The wide utility and generality of the above key transformations are highlighted by the applications in the unified synthesis of (±)-toxicodenance A, (+)-toxicodenane A, (+)-8,11-epi-toxicodenane A, and other oxatricyclic cores with different stereochemistries and ring sizes.
Collapse
Affiliation(s)
- Xu-Long Qin
- CAS Key Lab of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guo-Jie Wu
- CAS Key Lab of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.,Key Lab of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fu-She Han
- CAS Key Lab of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
17
|
Nájera C, Foubelo F, Sansano JM, Yus M. Enantioselective desymmetrization reactions in asymmetric catalysis. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Zhang H, Zhu L, Feng J, Liu X, Chen X, Wu Q, Zhu D. Directed evolution of an alcohol dehydrogenase for the desymmetric reduction of 2,2-disubstituted cyclopenta-1,3-diones by enzymatic hydrogen transfer. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00559j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Directed evolution of carbonyl reductase TbADH created mutant Tb2 with balanced activity toward ethyl secodione and isopropanol, enabling the desymmetric reduction of ethyl secodione to give (13R,17S)-ethyl secol with 94% yield, >99% ee and >99% de.
Collapse
Affiliation(s)
- Hongliu Zhang
- Tianjin Engineering Research Center of Biocatalytic Technology, National Engineering Research Center of Industrial Enzymes and National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin 300308, P. R. China
| | - Liangyan Zhu
- Tianjin Engineering Research Center of Biocatalytic Technology, National Engineering Research Center of Industrial Enzymes and National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin 300308, P. R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049 P.R. China
| | - Jinhui Feng
- Tianjin Engineering Research Center of Biocatalytic Technology, National Engineering Research Center of Industrial Enzymes and National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin 300308, P. R. China
| | - Xiangtao Liu
- Tianjin Engineering Research Center of Biocatalytic Technology, National Engineering Research Center of Industrial Enzymes and National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin 300308, P. R. China
| | - Xi Chen
- Tianjin Engineering Research Center of Biocatalytic Technology, National Engineering Research Center of Industrial Enzymes and National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin 300308, P. R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049 P.R. China
| | - Qiaqing Wu
- Tianjin Engineering Research Center of Biocatalytic Technology, National Engineering Research Center of Industrial Enzymes and National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin 300308, P. R. China
| | - Dunming Zhu
- Tianjin Engineering Research Center of Biocatalytic Technology, National Engineering Research Center of Industrial Enzymes and National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin 300308, P. R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049 P.R. China
| |
Collapse
|
19
|
Wu GJ, Tan DX, Han FS. The Phosphinamide-Based Catalysts: Discovery, Methodology Development, and Applications in Natural Product Synthesis. Acc Chem Res 2021; 54:4354-4370. [PMID: 34784171 DOI: 10.1021/acs.accounts.1c00479] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the total synthesis of natural products, synthetic efficiency has been an important driver for designing and developing new synthetic strategies and methodologies. To this end, the step, atom, and time economy and the overall yield are major factors to be considered. On the other hand, developing unified routes that can be used for synthesizing multiple molecules, specifically skeletally different classes of molecules, are also important aspects with which to be concerned. In the efforts toward efficient and flexible synthesis of structurally unique terpenoid and indole alkaloid natural products, we have designed and developed several phosphinamide-based new catalysts and reaction methodologies that have been compellingly demonstrated to be widely useful as strategic protocols for the diverse synthesis of various complex terpenoids and indole alkaloids. The important progress of these results will be summarized in this Account.In the first part, we present the stories of successful design and establishment of a novel method for the synthesis of P-stereogenic phosphinamides (P-SPhos) via a Pd-catalyzed C-H desymmetric enantioselective arylation, as well as the flexible derivatization of the P-stereogenic phosphinamides into various types of skeletally unique tricyclic and N,P-bidentate P-stereogenic compounds. Subsequently, the discovery of P-stereogenic phosphinamides as chiral organocatalysts for the desymmetric enantioselective reduction of cyclic 1,3-diketones and of phosphinamide-based cyclopalladium complex (C-Pd) as precatalysts for highly efficient Suzuki-Miyaura cross-coupling reaction of sterically congested nonactivated enolates is introduced. The notable features of the P-stereogenic phosphinamide-catalyzed desymmetric enantioselective reduction are highlighted by the broad substrate compatibility and excellent stereoselectivity, as well as most significantly, the good recoverability and reusability of catalysts. With regard to the sterically congested nonactivated enolates, such substrates are challenging for Suzuki cross-coupling reactions. We demonstrate that the phosphinamide-based cyclopalladium is a type of highly active precatalyst that allows the reaction to proceed under mild conditions and to be easily scaled up. Following the methodology development, the practical applications of these methods serving as strategic transformations are highlighted by the unified synthesis of four cyathane-type and two hamigeran-type terpenoids.In the second part, we describe the development of a robust method for oxidative Heck cross-coupling of indolyl amides by using the phosphinamide-based cyclopalladium as catalyst or phosphinamide as coligand. The method provides a general and straightforward method for diverse synthesis of indolyl δ-lactam derivatives, which present as a common core in a variety of Aspidosperma-derived indole alkaloids. The successful demonstration of this protocol for a concise and divergent synthesis of leuconodine-type indole alkaloids is also presented. We believe the results presented in this Account would have significant implications beyond our results and would find further applications in the field of synthetic methodology and natural product synthesis.
Collapse
Affiliation(s)
- Guo-Jie Wu
- CAS Key Lab of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin130022, China
| | - Dong-Xing Tan
- CAS Key Lab of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin130022, China
| | - Fu-She Han
- CAS Key Lab of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin130022, China
| |
Collapse
|
20
|
Hu ZQ, Li X, Liu LX, Yu CB, Zhou YG. Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation of β-Substituted α-Oxobutyrolactones. J Org Chem 2021; 86:17453-17461. [PMID: 34730976 DOI: 10.1021/acs.joc.1c02156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A concise and effective ruthenium-catalyzed asymmetric transfer hydrogenation of β-substituted α-oxobutyrolactones has been developed, delivering a series of cis-β-substituted α-hydroxybutyrolactone derivatives with excellent yields, enantioselectivities, and diastereoselectivities. Two consecutive stereogenic centers were constructed in one step through dynamic kinetic resolution under basic conditions. The reaction could be conducted on a gram scale without loss of activity and enantioselectivity. The reductive products could be easily transformed into useful building blocks.
Collapse
Affiliation(s)
- Zi-Qi Hu
- Zhang Dayu School of Chemistry, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | | | | | | | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| |
Collapse
|
21
|
Zhu L, Cui Y, Chen X, Zhang H, Feng J, Wu Q, Zhu D. Synthesis of single stereoisomers of 2,2-disubstituted 3-hydroxycyclohexane-1-ones via enzymatic desymmetric reduction of the 1,3-cyclohexanediones. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|