1
|
Saini R, Kukreti P, Chauhan R, Panwar A, Ghosh K. A well-defined phosphine-free metal-ligand cooperative route for N-alkylation of aromatic amines via activation of renewable alcohols catalyzed by NNN pincer cobalt(II) complexes. Dalton Trans 2025; 54:5838-5848. [PMID: 40079181 DOI: 10.1039/d4dt03095h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
This study presents the direct N-alkylation of aromatic amines using greener primary alcohols as alkyl donors, catalyzed by base metal-derived Co(II) catalysts via the borrowing hydrogen (BH) method. Two well-defined phosphine-free NNN-type pincer ligands (L1 and L2) were synthesized and utilized to prepare cobalt(II) catalysts C1 and C2. The catalysts were well characterized by UV-vis, IR, HRMS, and single-crystal X-ray diffraction studies. The catalysts C1 and C2 were utilized for the N-alkylation of various aromatic, heteroaromatic as well as aromatic diamines, and a wide substrate scope total of 30 derivatives was explored with isolated yields up to 95%. Two antihistamine drug precursors for tripelennamine and mepyramine were synthesized on a gram scale for the large-scale applicability of the current protocol. Various control experiments were also performed to explore the possible reaction intermediates and reaction pathway. Cobalt(II) intermediates involved in the catalytic cycle were also characterized by the HRMS study.
Collapse
Affiliation(s)
- Rahul Saini
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Prashant Kukreti
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Rahul Chauhan
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Abhishek Panwar
- Department of Chemistry National Institute of Technology Manipur, Langol-795004, Imphal West, Manipur, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
2
|
Paul B, Panja D, Kundu S. Synthesis of N-heterocycles through alcohol dehydrogenative coupling. Nat Protoc 2024; 19:3640-3676. [PMID: 39174661 DOI: 10.1038/s41596-024-01031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/24/2024] [Indexed: 08/24/2024]
Abstract
Nitrogen heterocycles are found in the structures of many biologically important compounds, as well as materials used in the synthesis of fine chemicals. Notably, ~59% of US Food and Drug Administration-approved small-molecule drugs contain nitrogen heterocycles. It is therefore meaningful to explore greener or more sustainable methods for their synthesis. The use of alcohols as reagents is attractive as they can be readily obtained from biomass derived natural resources. In the last two decades, alcohol dehydrogenative coupling reaction to synthesize various heterocycles were extensively explored which furnished hydrogen (H2) and water (H2O) as the two greener byproducts. In this protocol, we describe several efficient catalytic transformations to synthesize quinolines, 1,8-naphthyridines, quinoxalines, quinazolines, pyrimidines, benzimidazoles, pyrroles and pyridines, using alcohol as starting materials. We also describe the synthesis of several homogeneous iridium/ruthenium catalysts and heterogeneous cobalt/copper catalysts that can be used in these transformations. The reaction setup is simple; in a Schlenk/reaction tube with magnetic stir-bar, alcohol, corresponding coupling reagents (nucleophiles), catalyst, base and solvent (water or organic solvent such as toluene, dioxane or p-xylene) are added. The reaction mixture is refluxed at the specified temperature (110-150 °C)-either in air or under argon-to furnish these heterocycles. Synthesis of the catalysts takes 3-5 h and the coupling reactions take 4-5 h depending on the target product. The cobalt- and copper-based heterogeneous catalytic systems displayed an good catalyst recyclability.
Collapse
Affiliation(s)
- Bhaskar Paul
- Department of Chemistry, University of Oxford, Oxford, UK.
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur, India.
| | - Dibyajyoti Panja
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur, India
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur, India.
| |
Collapse
|
3
|
Bansal S, Punji B. Nickel-Catalyzed Chemodivergent Coupling of Alcohols: Efficient Routes to Access α,α-Disubstituted Ketones and α-Substituted Chalcones. Chemistry 2024:e202304082. [PMID: 38231839 DOI: 10.1002/chem.202304082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Chemodivergent (de)hydrogenative coupling of primary and secondary alcohols is achieved utilizing an inexpensive nickel catalyst, (6-OH-bpy)NiCl2 . This protocol demonstrates the synthesis of branched carbonyl compounds, α,α-disubstituted ketones, and α-substituted chalcones via borrowing hydrogen strategy and acceptorless dehydrogenative coupling, respectively. A wide range of aryl-based secondary alcohols are coupled with various primary alcohols in this tandem dehydrogenation/hydrogenation reaction. The nickel catalyst, along with KOt Bu or K2 CO3 , governed the selectivity for the formation of branched saturated ketones or chalcones. A preliminary mechanistic investigation confirms the reversible dehydrogenation of alcohols to carbonyls via metal-ligand cooperation (MLC) and the involvement of radical intermediates during the reaction.
Collapse
Affiliation(s)
- Sadhna Bansal
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
4
|
Ghosh A, Hegde RV, Limaye AS, R. T, Patil SA, Dateer RB. Biogenic synthesis of δ‐MnO 2 nanoparticles: A sustainable approach for C‐alkylation and quinoline synthesis via acceptorless dehydrogenation and borrowing hydrogen reactions. Appl Organomet Chem 2023; 37. [DOI: 10.1002/aoc.7119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/06/2023] [Indexed: 01/06/2025]
Abstract
The sustainable and environmentally benign biogenic synthesis of manganese‐oxide nanoparticles (MnO2 NPs) in a single crystalline δ‐phase and its subsequent synthetic utility have been described. The synthesized δ‐MnO2 NPs were characterized using scanning electron microscopy (SEM), energy dispersive X‐ray (EDX), and X‐ray diffraction (XRD) analysis techniques. The detailed analysis envisages the reduction of Mn(VII) to Mn(IV) was facilitated by various phytochemicals present in the aq. mango leaves extract, avoiding the use of external ligand source. The synthesized δ‐MnO2 NPs were perceived in a single delta (δ) monoclinic crystalline phase, wherein a spherical agglomerated morphology was displayed with a particle size of <5 nm. Further, the utility of newly developed δ‐MnO2 NPs was showcased for alpha‐keto‐alkylation and quinoline synthesis via hydrogen autotransfer and the acceptorless dehydrogenative coupling strategy. Moreover, a series of control experiments, mechanistic elucidation, catalyst recyclability, and a dye removal study were demonstrated.
Collapse
Affiliation(s)
- Arnab Ghosh
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
- Department of Chemistry Education Chungbuk National University Cheongju 28644 Republic of Korea
| | - Rajeev V. Hegde
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| | - Akshay S. Limaye
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
| | - Thrilokraj R.
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
| | - Siddappa A. Patil
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
| | - Ramesh B. Dateer
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
| |
Collapse
|
5
|
Pal S, Das S, Chakraborty S, Khanra S, Paul ND. Zn(II)-Catalyzed Multicomponent Sustainable Synthesis of Pyridines in Air. J Org Chem 2023; 88:3650-3665. [PMID: 36854027 DOI: 10.1021/acs.joc.2c02867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Herein, we report a Zn(II)-catalyzed solvent-free sustainable synthesis of tri- and tetra-substituted pyridines using alcohols as the primary feedstock and NH4OAc as the nitrogen source. Using a well-defined air-stable Zn(II)-catalyst, 1a, featuring a redox-active tridentate azo-aromatic pincer, 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (La), a wide variety of unsymmetrical 2,4,6-substituted pyridines were prepared by three-component coupling of primary and secondary alcohols with NH4OAc. Catalyst 1a is equally compatible with the four-component coupling. Unsymmetrical 2,4,6-substituted pyridines were also prepared via a four-component coupling of a primary alcohol with two different secondary alcohols and NH4OAc. A series of tetra-substituted pyridines were prepared up to 67% yield by coupling primary and secondary alcohols with 1-phenylpropan-1-one or 1,2-diphenylethan-1-one and NH4OAc. The 1a-catalyzed reactions also proceeded efficiently upon replacing the secondary alcohols with the corresponding ketones, producing the desired tri- and tetra-substituted pyridines in higher yields in a shorter reaction time. A few control experiments were performed to unveil the mechanistic aspects, which indicates that the active participation of the aryl-azo ligand during catalysis enables the Zn(II)-complex to act as an efficient catalyst for the present multicomponent reactions. Aerial oxygen acts as an oxidant during the Zn(II)-catalyzed dehydrogenation of alcohols, producing H2O and H2O2 as byproducts.
Collapse
Affiliation(s)
- Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Siuli Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhankar Khanra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
6
|
Manojveer S, Garg NK, Gul Z, Kanwal A, Goriya Y, Johnson MT. Ligand-Promoted [Pd]-Catalyzed α-Alkylation of Ketones through a Borrowing-Hydrogen Approach. ChemistryOpen 2023; 12:e202200245. [PMID: 36592045 PMCID: PMC9807026 DOI: 10.1002/open.202200245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Indexed: 01/03/2023] Open
Abstract
A new class of palladium complexes bearing bidentate 2-hydroxypyridine based ligands have been prepared and fully characterized. The applications of these new complexes towards ketone alkylation reactions with alcohols through a metal-ligand cooperative borrowing-hydrogen (BH) process were demonstrated.
Collapse
Affiliation(s)
- Seetharaman Manojveer
- Centre for Analysis and SynthesisDepartment of ChemistryLund UniversityP. O. Box 124221 00LundSweden
| | - Nitish K. Garg
- Centre for Analysis and SynthesisDepartment of ChemistryLund UniversityP. O. Box 124221 00LundSweden
| | - Zarif Gul
- Centre for Analysis and SynthesisDepartment of ChemistryLund UniversityP. O. Box 124221 00LundSweden
| | - Ayesha Kanwal
- Centre for Analysis and SynthesisDepartment of ChemistryLund UniversityP. O. Box 124221 00LundSweden
| | - Yogesh Goriya
- Centre for Analysis and SynthesisDepartment of ChemistryLund UniversityP. O. Box 124221 00LundSweden
| | - Magnus T. Johnson
- Centre for Analysis and SynthesisDepartment of ChemistryLund UniversityP. O. Box 124221 00LundSweden
- Perstorp ABPerstorp Industrial Park284 80PerstorpSweden
| |
Collapse
|
7
|
Skaria M, Culpepper JD, Daly SR. Leveraging Metal and Ligand Reactive Sites for One Pot Reactions: Ligand-Centered Borenium Ions for Tandem Catalysis with Palladium. Chemistry 2022; 28:e202201791. [PMID: 35997655 PMCID: PMC9828003 DOI: 10.1002/chem.202201791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 01/12/2023]
Abstract
Tandem catalysts that perform two different organic transformations in a single pot are highly desirable because they enable rapid and efficient assembly of simple organic building blocks into more complex molecules. Many examples of tandem catalysis rely on metal-catalyzed reactions involving one or more metal complexes. Remarkably, despite surging interest in the development of chemically reactive (i. e., non-innocent) ligands, there are few examples of metal complexes that leverage ligand-centered reactivity to perform catalytic reactions in tandem with separate catalytic reactions at the metal. Here we report how multifunctional Pd complexes with triaminoborane-derived diphosphorus ligands, called TBDPhos, appear to facilitate borenium-catalyzed cycloaddition reactions at the ligand, and Pd-catalyzed Stille and Suzuki cross-coupling reactions at the metal. Both transformations can be accessed in one pot to afford rare examples of tandem catalysis using separate metal and ligand catalysis sites in a single complex.
Collapse
Affiliation(s)
- Manisha Skaria
- Department of ChemistryThe University of IowaIowa CityIowa52242USA
| | | | - Scott R. Daly
- Department of ChemistryThe University of IowaIowa CityIowa52242USA
| |
Collapse
|
8
|
Borthakur I, Kumari S, Kundu S. Water as a solvent: transition metal catalyzed dehydrogenation of alcohols going green. Dalton Trans 2022; 51:11987-12020. [PMID: 35894592 DOI: 10.1039/d2dt01060g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The long-established practice of using organic solvents in synthetic chemistry is currently becoming a major focus of environmental alarms as many of the chemical wastes are generated in the form of organic solvents. Recently, various alternative solvents have been recognized by the scientific community, including water, ionic liquids, supercritical fluids, glycerol, polyethylene glycol, etc. Among these alternatives, water is unquestionably an ideal solvent as it is abundant, cheap, non-toxic, and non-flammable. In the last few decades, a breakthrough has been achieved in the field of transition metal-catalyzed dehydrogenation of alcohols and the related chemistry for the sustainable synthesis of a wide range of valuable compounds. Although a large number of reports with new potential are published every year following this alcohol dehydrogenation strategy, the utilization of water as a solvent in alcohol dehydrogenation and related coupling reactions is yet to be highlighted properly. This review summarizes the advances in metal-catalyzed dehydrogenative functionalization of alcohols using water as a solvent.
Collapse
Affiliation(s)
- Ishani Borthakur
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh (U.P.), India.
| | - Saloni Kumari
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh (U.P.), India.
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh (U.P.), India.
| |
Collapse
|
9
|
Spielvogel KD, Stumme NC, Fetrow TV, Wang L, Luna JA, Keith JM, Shaw SK, Daly SR. Quantifying Variations in Metal–Ligand Cooperative Binding Strength with Cyclic Voltammetry and Redox-Active Ligands. Inorg Chem 2022; 61:2391-2401. [DOI: 10.1021/acs.inorgchem.1c03014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kyle D. Spielvogel
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Nathan C. Stumme
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Taylor V. Fetrow
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Li Wang
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Javier A. Luna
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Jason M. Keith
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Scott K. Shaw
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Scott R. Daly
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| |
Collapse
|
10
|
Borthakur I, Sau A, Kundu S. Cobalt-catalyzed dehydrogenative functionalization of alcohols: Progress and future prospect. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214257] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Narjinari H, Tanwar N, Kathuria L, Jasra RV, Kumar A. Guerbet-type β-alkylation of secondary alcohols catalyzed by chromium chloride and its corresponding NNN pincer complex. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00759b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
β-Alkylation of alcohols has been efficiently accomplished using readily available 3d metal Cr under microwave conditions in air. Well-defined molecular Cr is involved with a KIE of 7.33 and insertion of α-alkylated ketone into Cr–H bond as the RDS.
Collapse
Affiliation(s)
- Himani Narjinari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
| | - Niharika Tanwar
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
| | - Lakshay Kathuria
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
| | - Raksh Vir Jasra
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
- Reliance Industries limited, R&D Centre, Vadodara Manufacturing Division, Vadodara, 391 346, Gujarat, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
- Jyoti and Bhupat School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
12
|
Ganguli K, Belkova N, Kundu S. Cyclometalated (NNC)Ru(II) complex catalyzed β-methylation of alcohols using methanol. Dalton Trans 2022; 51:4354-4365. [DOI: 10.1039/d1dt03967a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Indolyl fragment containing phenanthroline based new ligands and their corresponding Ru(II) complexes were synthesized and fully characterized by various spectroscopic techniques. Catalytic activity of these newly synthesized cyclometalated (NNC)Ru(II) complexes...
Collapse
|
13
|
Nandi PG, Kumar P, Kumar A. Ligand-free Guerbet-type reactions in air catalyzed by in situ formed complexes of base metal salt cobaltous chloride. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02159a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Inexpensive, earth-abundant & environmentally benign CoCl2 efficiently catalyses the β-alkylation of alcohol in unprecedented yields (89%) & turnovers (8900). Mechanistic studies are indicative of in situ generated homogeneous molecular Co catalysts.
Collapse
Affiliation(s)
- Pran Gobinda Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Pradhuman Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
- School of Health Science & Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
14
|
Buil ML, Cabeza JA, Esteruelas MA, Izquierdo S, Laglera-Gándara CJ, Nicasio AI, Oñate E. Alternative Conceptual Approach to the Design of Bifunctional Catalysts: An Osmium Germylene System for the Dehydrogenation of Formic Acid. Inorg Chem 2021; 60:16860-16870. [PMID: 34657436 PMCID: PMC8564761 DOI: 10.1021/acs.inorgchem.1c02893] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
The reaction of the hexahydride OsH6(PiPr3)2 with a P,Ge,P-germylene-diphosphine
affords
an osmium tetrahydride derivative bearing a Ge,P-chelate, which arises
from the hydrogenolysis of a P–C(sp3) bond. This
Os(IV)–Ge(II) compound is a pioneering example of a bifunctional
catalyst based on the coordination of a σ-donor acid, which
is active in the dehydrogenation of formic acid to H2 and CO2. The kinetics
of the dehydrogenation, the characterization of the resting state
of the catalysis, and DFT calculations point out that the hydrogen
formation (the fast stage) exclusively occurs on the coordination
sphere of the basic metal center, whereas both the metal center and
the σ-donor Lewis acid cooperatively participate in the CO2 release (the rate-determining step). During the process,
the formate group pivots around the germanium to approach its hydrogen
atom to the osmium center, which allows its transfer to the metal
and the CO2 release. An alternative
class of bifunctional catalysts can be assembled
by coordination of σ-donor Lewis acids to platinum-group-metal
basic fragments. In contrast to what happens with the previously reported
bifunctional catalysts, this design allows enhancing the basicity
of the base and the acidity of the acid. According to this, a bifunctional
catalyst for the dehydrogenation of formic acid, based on an osmium(IV)-germylene
cooperative system, has been prepared and the mechanism of the catalysis
established.
Collapse
Affiliation(s)
- María L Buil
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Javier A Cabeza
- Departamento de Química Orgánica e Inorgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, 33071 Oviedo, Spain
| | - Miguel A Esteruelas
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Susana Izquierdo
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Carlos J Laglera-Gándara
- Departamento de Química Orgánica e Inorgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, 33071 Oviedo, Spain
| | - Antonio I Nicasio
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|