1
|
Tali JA, Kumar G, Sharma BK, Rasool Y, Sharma Y, Shankar R. Synthesis and site selective C-H functionalization of imidazo-[1,2- a]pyridines. Org Biomol Chem 2023; 21:7267-7289. [PMID: 37655687 DOI: 10.1039/d3ob00849e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Imidazo[1,2-a]pyridine has attracted much interest in drug development because of its potent medicinal properties, therefore the discovery of novel methods for its synthesis and functionalization continues to be an exciting area of research. Although transition metal catalysis has fuelled the most significant developments, extremely beneficial metal-free approaches have also been identified. Even though pertinent reviews focused on imidazo[1,2-a]pyridine synthesis, properties (physicochemical and medicinal), and functionalization at the C3 position have been published, none of these reviews has focused on the outcomes obtained in the field of global ring functionalization. We wish here to describe a brief synthesis and an overview of all the functionalization reactions at each carbon atom, viz, C2, C3, C5, C6, C7 and C8 of this scaffold, divided into sections based on site-selectivity and the type of functionalization methods used.
Collapse
Affiliation(s)
- Javeed Ahmad Tali
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Gulshan Kumar
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Bhupesh Kumar Sharma
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Younis Rasool
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Yashika Sharma
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Ravi Shankar
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
2
|
Tali JA, Shankar R. Ru(II)-Catalyzed Synthesis of Fused Imidazo[1,2- a]pyridine-chromenones and Methylene-Tethered Bis-imidazo[1,2- a]pyridines and Regioselective O-Acetoxylation of Imidazo[1,2- a]pyridines. Org Lett 2023; 25:3200-3205. [PMID: 37140128 DOI: 10.1021/acs.orglett.3c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Herein, we disclose an unprecedented protocol via ruthenium-catalyzed annulation for the synthesis of 6H-chromeno[4',3':4,5]imidazo[1,2-a]pyridin-6-one, and functionalized 2-(3-formylimidazo[1,2-a]pyridin-2-yl)phenyl acetate has been revealed by intramolecular chelation-assisted C-H activation. Additionally, a one-pot approach for creating bis(2-phenylimidazo[1,2-a]pyridin-3-yl)methane (BIP) has been realized through ruthenium catalysis with the use of formic acid. This method was used in gram-scale synthesis of BIP and step-economical late-stage functionalization of a marketed drug, zolimidine, in good yield.
Collapse
Affiliation(s)
- Javeed Ahmad Tali
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Ravi Shankar
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| |
Collapse
|
3
|
Kazi I, Nandy A, Selvam R, Sekar G. Halogen Bond-Activated Visible-Light-Mediated Regioselective C-H Arylation of 2-Phenylimidazo-[1,2- a]pyridines. J Org Chem 2022; 87:12323-12333. [PMID: 36065525 DOI: 10.1021/acs.joc.2c01548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient method for transition metal-free halogen bond-assisted regioselective C-H arylation of 2-phenylimidazo-[1,2-a]pyridines under visible-light condition has been developed. The halogen bond between an aryl halide and base KOtBu initiates an electron transfer process and generates an aryl radical, which catalyzes its coupling with 2-phenylimidazo-[1,2-a]pyridines to give arylated products in good yield. Several control experiments, density functional theory calculations, and ultraviolet-visible analysis indicate the presence of a halogen bond between an aryl halide and KOtBu. This methodology has been successfully utilized to synthesize antileishmanial agents.
Collapse
Affiliation(s)
- Imran Kazi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600 036, India
| | - Anuradha Nandy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600 036, India
| | - Raji Selvam
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600 036, India
| | - Govindasamy Sekar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600 036, India
| |
Collapse
|
4
|
Ruthenium (II) catalysed regioselective C-2ʹ-alkenylation of 2-phenylimidazo[1,2-a]pyridine-3-carbaldehydes. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Tali JA, Kumar G, Singh D, Shankar R. Palladium(II) catalyzed site-selective C-H olefination of imidazo[1,2- a]pyridines. Org Biomol Chem 2021; 19:9401-9406. [PMID: 34705920 DOI: 10.1039/d1ob01683k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herein, we disclose an efficient Pd(II)-catalyzed site selective C8 alkenylation of imidazo[1,2-a]pyridines with electronically biased olefinic substrates. Notably, besides the presence of four C-H sites available, selective mono-alkenylation was achieved by N-chelation overriding O-chelation. The versatility and scalability of the catalysis enabled the selective late-stage functionalization of a marketed drug, zolimidine. Various substituted heteroaryl alkenes can be afforded with moderate to good yields with high C8 regioselectivity.
Collapse
Affiliation(s)
- Javeed Ahmad Tali
- Natural Product and Medicinal Chemistry (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Gulshan Kumar
- Natural Product and Medicinal Chemistry (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Davinder Singh
- Natural Product and Medicinal Chemistry (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ravi Shankar
- Natural Product and Medicinal Chemistry (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
6
|
Singh D, Tali JA, Kumar G, Shankar R. Metal-free oxidative decarbonylative halogenation of fused imidazoles. NEW J CHEM 2021. [DOI: 10.1039/d1nj04440k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient strategy has been developed for the deformylative halogenation of carbaldehyde imidazo-fused heterocycles in the presence of TBHP controlled by temperature.
Collapse
Affiliation(s)
- Davinder Singh
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Javeed Ahmad Tali
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gulshan Kumar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|