1
|
Li X, Liu J, Wan JP. Tunable Synthesis of 4-Acyl- and 4-Formyl Pyrroles by Rhodium-Catalyzed Ring-Expansion of Azirines with Enaminones. Org Lett 2025; 27:1949-1954. [PMID: 39969818 DOI: 10.1021/acs.orglett.5c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
A rhodium-catalyzed annulation of 2H-azirines with enaminones is presented. This protocol affords a convenient approach to the diversity-oriented synthesis of 4-acyl- and 4-formyl pyrroles with good functional group tolerance. The utility of this reaction has been demonstrated by scale-up preparation, late-stage modification of natural molecules, and synthesis of diverse derivatives.
Collapse
Affiliation(s)
- Xiuli Li
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jianchao Liu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
2
|
Lopez-Mercado S, Enríquez C, Valderrama JA, Pino-Rios R, Ruiz-Vásquez L, Ruiz Mesia L, Vargas-Arana G, Buc Calderon P, Benites J. Exploring the Antibacterial and Antiparasitic Activity of Phenylaminonaphthoquinones-Green Synthesis, Biological Evaluation and Computational Study. Int J Mol Sci 2024; 25:10670. [PMID: 39408999 PMCID: PMC11870044 DOI: 10.3390/ijms251910670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 03/03/2025] Open
Abstract
Organic compounds with antibacterial and antiparasitic properties are gaining significance for biomedical applications. This study focuses on the solvent-free synthesis (green synthesis) of 1,4-naphthoquinone or 2,3-dichloro-1,4-naphthoquinone with different phenylamines using silica gel as an acid solid support. The study also includes in silico PASS predictions and the discovery of antibacterial and antiparasitic properties of phenylaminonaphthoquinone derivatives 1-12, which can be further applied in drug discovery and development. These activities were discussed in terms of molecular descriptors such as hydrophobicity, molar refractivity, and half-wave potentials. The in vitro antimicrobial potential of the synthesized compounds 1-12 was evaluated against a panel of six bacterial strains (three Gram-positive: Staphylococcus aureus, Proteus mirabilis, and Enterococcus faecalis; and three Gram-negative bacteria: Escherichia coli, Salmonella typhimurium, and Klebsiella pneumoniae). Six compounds (1, 3, 5, 7, 10, and 11) showed better activity toward S. aureus with MIC values between 3.2 and 5.7 μg/mL compared to cefazolin (MIC = 4.2 μg/mL) and cefotaxime (MIC = 8.9 μg/mL), two cephalosporin antibiotics. Regarding in vitro antiplasmodial activity, compounds 1 and 3 were the most active against the Plasmodium falciparum strain 3D7 (chloroquine-sensitive), displaying IC50 values of 0.16 and 0.0049 μg/mL, respectively, compared to chloroquine (0.33 μg/mL). In strain FCR-3 (chloroquine-resistant), most of the compounds showed good activity, with compounds 3 (0.12 μg/mL) and 11 (0.55 μg/mL) being particularly noteworthy. Additionally, docking studies were used to better rationalize the action and prediction of the binding modes of these compounds. Finally, absorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions were performed.
Collapse
Affiliation(s)
- Sussan Lopez-Mercado
- Magister en Ciencias Químicas y Farmacéuticas, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile; (S.L.-M.); (R.P.-R.)
| | - Cinthya Enríquez
- Doctorado en Química Medicinal, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile; (C.E.); (P.B.C.)
| | - Jaime A. Valderrama
- Laboratorio de Química Medicinal, Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile;
| | - Ricardo Pino-Rios
- Magister en Ciencias Químicas y Farmacéuticas, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile; (S.L.-M.); (R.P.-R.)
- Doctorado en Química Medicinal, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile; (C.E.); (P.B.C.)
- Laboratorio de Química Medicinal, Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile;
| | - Liliana Ruiz-Vásquez
- Centro de Investigación de Recursos Naturales, Universidad Nacional de la Amazonía Peruana (UNAP), AA. HH. “Nuevo San Lorenzo”, Pasaje Paujiles S/N, San Juan Bautista, Iquitos16002, Peru; (L.R.-V.); (L.R.M.)
- Facultad de Farmacia y Bioquímica, Universidad Nacional de la Amazonía Peruana, Nina Rumi, San Juan Bautista, Iquitos 16000, Peru
| | - Lastenia Ruiz Mesia
- Centro de Investigación de Recursos Naturales, Universidad Nacional de la Amazonía Peruana (UNAP), AA. HH. “Nuevo San Lorenzo”, Pasaje Paujiles S/N, San Juan Bautista, Iquitos16002, Peru; (L.R.-V.); (L.R.M.)
| | - Gabriel Vargas-Arana
- Laboratorio de Química de Productos Naturales, Instituto de Investigaciones de la Amazonía Peruana (IIAP), Av. Abelardo Quiñones km 2.5, Iquitos 16001, Peru
- Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Zungarocha S/N, San Juan Bautista, Iquitos 16002, Peru
| | - Pedro Buc Calderon
- Doctorado en Química Medicinal, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile; (C.E.); (P.B.C.)
- Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université Catholique de Louvain, 73 Avenue E. Mounier, 1200 Brussels, Belgium
| | - Julio Benites
- Magister en Ciencias Químicas y Farmacéuticas, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile; (S.L.-M.); (R.P.-R.)
- Doctorado en Química Medicinal, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile; (C.E.); (P.B.C.)
- Laboratorio de Química Medicinal, Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile;
| |
Collapse
|
3
|
Li J, Liao M, Zhu H, Han Z, Sun J, Huang H. Mild and Catalytic Synthesis of Pyrroles from Vinyl Ethynylethylene Carbonates. J Org Chem 2024; 89:12935-12945. [PMID: 39226303 DOI: 10.1021/acs.joc.4c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A tandem remote propargylic amination/ring closure/aromatization reaction of vinyl ethynylethylene carbonates and amines has been developed, successfully constructing pyrrole derivatives. The reaction features mild conditions, high regioselectivity, high yields, and good functional group tolerance, making it an efficient method for pyrrole synthesis. Importantly, a variety of substrates containing natural product skeletons could also be compatibly and efficiently converted into pyrroles under the reaction conditions.
Collapse
Affiliation(s)
- Jixing Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, No. 21 Gehu Road, Changzhou, 213164, P. R. China
| | - Maoyan Liao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, No. 21 Gehu Road, Changzhou, 213164, P. R. China
| | - Haihui Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, No. 21 Gehu Road, Changzhou, 213164, P. R. China
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, No. 21 Gehu Road, Changzhou, 213164, P. R. China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, No. 21 Gehu Road, Changzhou, 213164, P. R. China
| |
Collapse
|
4
|
Bakibillah M, Reja S, Sarkar K, Mukherjee D, Sarkar D, Roy S, Almutairi TM, Islam MS, Das RK. Cp*Ir(III) complexes catalyzed solvent-free synthesis of quinolines, pyrroles and pyridines via an ADC strategy. Org Biomol Chem 2024; 22:4704-4719. [PMID: 38775495 DOI: 10.1039/d4ob00459k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
A trio of Ir(III) complexes that are held together by a picolinamidato moiety were created. In our earlier research, we demonstrated the catalytic activity of the complexes for producing alpha-alkylated ketones from a ketone or secondary alcohol with a primary alcohol in the presence of a catalytic amount of a Cp*Ir(III) catalyst and tBuOK in toluene at 110 °C using the hydrogen-borrowing technique. Earlier many research groups had synthesized quinoline, pyrrole, and pyridine derivatives using 2-amino alcohol and ketone or secondary alcohol derivatives as starting materials, but in all those cases the reaction conditions are not suitable in terms of green synthesis like more catalyst loading, base loading, long reaction time, and high temperature. In addition, most of the reactions contain phosphine a hazardous by-product, along with the catalyst. Keeping in mind these shortcomings, we tried to expand the use of our catalysts after achieving an excellent result in our previous work, and we were successful in producing quinoline, pyrrole, and pyridine derivatives through acceptor-less dehydrogenative coupling (ADC) procedures at 90-110 °C under neat/solvent-free conditions and achieved good to exceptional yields of those nitrogen-containing heterocycles. This methodology is attractive because it is environmentally benign and allows for the "green" synthesis of nitrogen-containing heterocycles. All that is required is a modest quantity of catalyst and base, and the by-products are merely H2O and H2.
Collapse
Affiliation(s)
- Md Bakibillah
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India.
| | - Sahin Reja
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India.
| | - Kaushik Sarkar
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India.
| | - Deboshmita Mukherjee
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India.
| | - Dilip Sarkar
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India.
| | - Sumana Roy
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India.
| | | | | | - Rajesh Kumar Das
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
5
|
Gotsko MD, Saliy IV, Ushakov IA, Sobenina LN, Trofimov BA. Functionalized 2,3'-Bipyrroles and Pyrrolo[1,2- c]imidazoles from Acylethynylpyrroles and Tosylmethylisocyanide. Molecules 2024; 29:885. [PMID: 38398639 PMCID: PMC10893325 DOI: 10.3390/molecules29040885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
An efficient method for the synthesis of pharmaceutically prospective but still rare functionalized 2,3'-bipyrroles (in up to 80% yield) by the cycloaddition of easily available acylethynylpyrroles with tosylmethylisocyanide (TosMIC) has been developed. The reaction proceeds under reflux (1 h) in the KOH/THF system. In the t-BuONa/THF system, TosMIC acts in two directions: along with 2,3'-bipyrroles, the unexpected formation of pyrrolo[1,2-c]imidazoles is also observed (products ratio~1:1).
Collapse
Affiliation(s)
| | | | | | | | - Boris A. Trofimov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia; (M.D.G.); (I.V.S.); (I.A.U.); (L.N.S.)
| |
Collapse
|
6
|
Jiao L, Wang Y, Ding L, Zhang C, Wang XN, Chang J. Synthesis of 2-Aminopyrroles Via Metal-Free Annulation of Ynamides with 2 H-Azirines. J Org Chem 2022; 87:15564-15570. [DOI: 10.1021/acs.joc.2c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lianhong Jiao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yanan Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lixia Ding
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chaofeng Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Na Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Junbiao Chang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
7
|
Fu W, Zhu L, Tan S, Zhao Z, Yu X, Wang L. Copper/Nitroxyl-Catalyzed Synthesis of Pyrroles by Oxidative Coupling of Diols and Primary Amines at Room Temperature. J Org Chem 2022; 87:13389-13395. [PMID: 36130051 DOI: 10.1021/acs.joc.2c01646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Cu/ABNO-catalyzed aerobic oxidative coupling of diols and primary amines to access N-substituted pyrroles is highlighted (ABNO = 9-azabicyclo[3.3.1]nonane N-oxyl). The reaction proceeds at room temperature with an O2 balloon as the oxidant using commercially available materials as the substrates and catalysts. The catalyst system is characterized by a broad range of substrates and a good tolerance to sensitive functional groups. The gram-scale experiment proves this system's practicability.
Collapse
Affiliation(s)
- Weiru Fu
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China
| | - Lina Zhu
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China
| | - Shangzhi Tan
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China
| | - Zhengjia Zhao
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China
| | - Xiangzhu Yu
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China
| | - Lianyue Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China
| |
Collapse
|
8
|
Wu CC, Ambre R, Lee MH, Shie JJ. Flexible Construction Approach to the Synthesis of 1,5-Substituted Pyrrole-3-carbaldehydes from 5-Bromo-1,2,3-triazine. Org Lett 2022; 24:2889-2893. [PMID: 35385278 DOI: 10.1021/acs.orglett.2c00891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report an efficient and mild tandem catalytic process for the synthesis of functionalized pyrrole-3-carbaldehydes. These compounds were obtained by a one-pot three-component reaction of 5-bromo-1,2,3-triazine, terminal alkynes, and primary amines via a palladium-catalyzed Sonogashira coupling reaction, and then annulation through a silver-mediated reaction of the resulting alkynyl 1,2,3-triazines allowed for access to the multifunctionalized pyrrole-3-carbaldehydes.
Collapse
Affiliation(s)
- Chien-Chi Wu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Ram Ambre
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Meng-Hsuan Lee
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
9
|
Nakamura M, Yoshida K, Togo H. Novel preparation of 2,5-diarylpyrroles from aromatic nitriles with 3-arylpropylmagnesium bromides, 1,3-diiodo-5,5-dimethylhydantoin, and BuOK. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|