1
|
Biletskyi B, Dousset M, Colonna P, Héran V, Carissan Y, Commeiras L, Chouraqui G. Formation of Substituted Benzocyclobutenes Starting from Donor-Acceptor Cyclopropanes. J Org Chem 2025; 90:4115-4120. [PMID: 40048655 DOI: 10.1021/acs.joc.4c02926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
We describe an operationally simple, good-yielding, two-step cascade process to convert biscyclopropanes 1 into high-value benzocyclobutene building blocks 3. This study highlights the novel reactivity of our "in-house" donor-acceptor cyclopropane, achieving complete diastereoselectivity and regioselectivity transfer.
Collapse
Affiliation(s)
- Bohdan Biletskyi
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, 13397 Marseille, France
| | - Maxime Dousset
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, 13397 Marseille, France
| | - Pierre Colonna
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, 13397 Marseille, France
| | - Virginie Héran
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, 13397 Marseille, France
| | - Yannick Carissan
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, 13397 Marseille, France
| | - Laurent Commeiras
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, 13397 Marseille, France
| | - Gaëlle Chouraqui
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, 13397 Marseille, France
| |
Collapse
|
2
|
Pramanick PK, Zhao S, Ji HT, Chen X, Yang G. Pd(II)-Catalyzed Asymmetric [2+2] Annulation for the Construction of Chiral Benzocyclobutenes. Angew Chem Int Ed Engl 2025; 64:e202415927. [PMID: 39485640 DOI: 10.1002/anie.202415927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/03/2024]
Abstract
Asymmetric de novo synthesis of benzocyclobutenes (BCBs) via catalytic intermolecular reaction is highly desired for efficient access to this important class of compounds, yet such a strategy remains unmet challenge. Here, we report a Pd/Pyrox-catalyzed asymmetric [2+2] annulation between arylboronic acids and functionalized alkenes, providing an unprecedented efficient protocol to access various enantio-enriched BCBs in a modular and versatile manner under mild conditions. A broad substrate scope with excellent enantioselectivity has been achieved under the current protocol. The isolation and characterization of the key chiral palladacycle intermediate, together with DFT calculations, provides strong evidence for the catalytic pathway including an enantiodetermining arylpalladation step.
Collapse
Affiliation(s)
- Pranab K Pramanick
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shen Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hao-Tian Ji
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiangyang Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guoqiang Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
3
|
Ur Rehman Shah H, Li Q, Jones CR. syn-1,2-Diaminobenzocyclobutenes from [2+2] cycloaddition of 2-imidazolones with arynes. Chem Commun (Camb) 2024; 60:11928-11931. [PMID: 39344579 DOI: 10.1039/d4cc04023f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Formal [2+2] cycloaddition of arynes with 2-imidazolones affords syn-1,2-diaminobenzocyclobutenes. The transformation can also be conducted as a one-pot, three-stage process direct from simple propargyl amines and isocyanates to afford the new stereochemically defined benzocyclobutene frameworks.
Collapse
Affiliation(s)
- Haseeb Ur Rehman Shah
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Qi Li
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Christopher R Jones
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
4
|
Zhang W, Li Z, Hu H, Wang J, Xu ZF, Yu M, Li CY. Copper-Catalyzed Synthesis of Furan-Tethered Benzocyclobutenes via Carbene-Mediated 1,4-Sulfinate Migration-Annulation. Org Lett 2024; 26:5453-5457. [PMID: 38913009 DOI: 10.1021/acs.orglett.4c01679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
A copper-catalyzed intramolecular cascade reaction of conjugated enynones has been achieved via a pivotal 1,4-sulfinate migration step. This process leverages a cost-effective and ecofriendly copper salt as catalyst, enabling the efficient construction of five- and four-membered rings in a rapid, sequential manner, producing furan-tethered benzocyclobutenes in good to excellent yields under mild conditions. The reaction is characterized by 100% atom economy, outstanding efficiency, and excellent diastereoselectivity in the cases studied. The robustness of this method is evidenced by its compatibility with air exposure and the use of undistilled, commercially available solvents, further enhancing its practicality.
Collapse
Affiliation(s)
- Wenzheng Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, China
| | - Ziwei Li
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, China
| | - Huiqin Hu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, China
| | - Jingwei Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, China
| | - Ze-Feng Xu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, China
| | - Mingming Yu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, China
| | - Chuan-Ying Li
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, China
| |
Collapse
|
5
|
Tan HB, Liu YS, Zhou JY, Cao M, Lei T, Ren SY, Lin CQ, Yang YF, Hu ZL, Xu ZG, Tang DY, Chen ZZ, Qu XY. Tandem Vinylogous Aldol and Intramolecular [2 + 2] Cycloaddition toward Benzocyclobutenes by UV Light Photocatalysis. Org Lett 2024; 26:3304-3309. [PMID: 38587334 DOI: 10.1021/acs.orglett.4c00994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A facile and efficient radical tandem vinylogous aldol and intramolecular [2 + 2] cycloaddition reaction for direct synthesis of cyclobutane-containing benzocyclobutenes (BCBs) under extremely mild conditions without using any photocatalysts is reported. This approach exhibited definite compatibility with functional groups and afforded new BCBs with excellent regioselectivity and high yields. Moreover, detailed mechanism studies were carried out both experimentally and theoretically. The readily accessible, low-cost, and ecofriendly nature of the developed strategy will endow it with attractive applications in organic and medicinal chemistry.
Collapse
Affiliation(s)
- Hong-Bo Tan
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Ying-Shan Liu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Jia-Ying Zhou
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Man Cao
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Tong Lei
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Si-Ying Ren
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Chang-Qiu Lin
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yi-Fan Yang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhang-Liang Hu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhi-Gang Xu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Dian-Yong Tang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhong-Zhu Chen
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Xian-You Qu
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| |
Collapse
|
6
|
Wang H, Gao Z, Wang J, Chen D, Wang Y, Sun H, Hao HD, Ren L. Asymmetric Synthesis of Scillascillin-Type Homoisoflavonoid. Org Lett 2024; 26:834-838. [PMID: 38240237 DOI: 10.1021/acs.orglett.3c03968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The first asymmetric synthesis of a scillascillin-type homoisoflavonoid was reported. Key reactions for the asymmetric synthesis of benzocyclobutene include catalytic reductive desymmetrization of malonic ester and an intramolecular C-H activation of the methyl group.
Collapse
Affiliation(s)
- Huachao Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiyu Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dantong Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanhai Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong-Dong Hao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Science, Shanghai 200032, China
| | - Li Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
7
|
Yoshimura T, Onda KI, Matsuo JI. Asymmetric Cycloaddition Reactions of Aryne Intermediates with a Chiral Carbon-Carbon Axis: Syntheses of Axially Chiral Biaryl Compounds. Org Lett 2023. [PMID: 38055630 DOI: 10.1021/acs.orglett.3c03983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
An asymmetric synthesis via an axially chiral arylaryne intermediate was developed. A cycloaddition reaction with various arynophiles was used to obtain chiral biaryl compounds while preserving the enantiomeric excess (ee) of a precursor even though the reaction proceeds through an arylaryne intermediate, whose chirality decreases on a time-dependent basis. High chiral transfer from a precursor to a product was observed not only at low temperature (-78 °C) but also at room temperature.
Collapse
Affiliation(s)
- Tomoyuki Yoshimura
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ken-Ichi Onda
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Jun-Ichi Matsuo
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
8
|
Yang JM, Lin YK, Sheng T, Hu L, Cai XP, Yu JQ. Regio-controllable [2+2] benzannulation with two adjacent C(sp 3)-H bonds. Science 2023; 380:639-644. [PMID: 37167386 PMCID: PMC10243499 DOI: 10.1126/science.adg5282] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023]
Abstract
Regiocontrol in traditional cycloaddition reactions between unsaturated carbon compounds is often challenging. The increasing focus in modern medicinal chemistry on benzocyclobutene (BCB) scaffolds indicates the need for alternative, more selective routes to diverse rigid carbocycles rich in C(sp3) character. Here, we report a palladium-catalyzed double C-H activation of two adjacent methylene units in carboxylic acids, enabled by bidentate amide-pyridone ligands, to achieve a regio-controllable synthesis of BCBs through a formal [2+2] cycloaddition involving σ bonds only (two C-H bonds and two aryl-halogen bonds). A wide range of cyclic and acyclic aliphatic acids, as well as dihaloheteroarenes, are compatible, generating diversely functionalized BCBs and hetero-BCBs present in drug molecules and bioactive natural products.
Collapse
Affiliation(s)
- Ji-Min Yang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yu-Kun Lin
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tao Sheng
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Liang Hu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Xin-Pei Cai
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
9
|
Guo C, Peng Q, Wei H, Liu J, Hu X, Peng J, Ma J, Ye X, Yang J. Phosphorus-Containing Flame-Retardant Benzocyclobutylene Composites with High Thermal Stability and Low CTE. ACS OMEGA 2023; 8:9464-9474. [PMID: 36936317 PMCID: PMC10018689 DOI: 10.1021/acsomega.2c08159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
As a component of printed circuit substrate, copper clad laminate (CCL) needs to meet the performance requirements of heat resistance, flame retardancy, and low coefficient of thermal expansion (CTE), which, respectively, affects the stability, safety, and processability of terminal electronic products. In this paper, benzocyclobutylene (BCB)-functionalized phosphorus-oxygen flame retardant composites were prepared through introducing the BCB groups, and the performance was researched by thermogravimetric analysis, microcombustion calorimetry, and thermomechanical analysis. The research results show that these phosphorus oxide compounds containing BCB groups show good thermal stability and low total heat release (THR) after thermal curing, and the more BCB groups on the phosphorus oxide monomers, the better the thermal stability and flame retardancy of cured resins. The Td5 and THR of the composite (M3) are as high as 443 °C and 23.1 kJ/g, respectively. In addition, the CTE of M3 is as low as 16.71 ppm/°C. Introduction of BCB groups which can be crosslinked through heat to improve the thermal stability, flame retardancy, and reduced CTE of traditional organophosphorus flame retardant materials. These materials are expected to be good candidates for CCL substrates for electronic circuits.
Collapse
Affiliation(s)
- Chao Guo
- School
of Materials and Chemistry, Southwest University
of Science and Technology, Mianyang 621010, China
- State
Key Laboratory of Environmentally-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qiuxia Peng
- School
of Materials Science and Engineering, Sichuan
University of Science & Engineering, Zigong 643000, China
| | - Hubo Wei
- School
of Materials and Chemistry, Southwest University
of Science and Technology, Mianyang 621010, China
- State
Key Laboratory of Environmentally-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jiaying Liu
- School
of Materials and Chemistry, Southwest University
of Science and Technology, Mianyang 621010, China
- State
Key Laboratory of Environmentally-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xinyu Hu
- School
of Materials and Chemistry, Southwest University
of Science and Technology, Mianyang 621010, China
- State
Key Laboratory of Environmentally-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Juan Peng
- School
of Materials and Chemistry, Southwest University
of Science and Technology, Mianyang 621010, China
- State
Key Laboratory of Environmentally-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jiajun Ma
- School
of Materials and Chemistry, Southwest University
of Science and Technology, Mianyang 621010, China
- State
Key Laboratory of Environmentally-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xu Ye
- School
of Materials and Chemistry, Southwest University
of Science and Technology, Mianyang 621010, China
- School
of Continuing Education, Southwest University
of Science and Technology, Mianyang 621010, China
| | - Junxiao Yang
- School
of Materials and Chemistry, Southwest University
of Science and Technology, Mianyang 621010, China
- State
Key Laboratory of Environmentally-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
10
|
Guo R, Witherspoon BP, Brown MK. Stereoselective [2+2]-Cycloadditions of chiral allenic ketones and alkenes: Applications towards the synthesis of benzocyclobutenes and endiandric acids. Tetrahedron 2022; 122:132932. [PMID: 36685046 PMCID: PMC9850822 DOI: 10.1016/j.tet.2022.132932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cyclobutanes are important motifs that have found utility in many contexts. Prior work has demonstrated an enantioselective isomerization/stereoselective [2 + 2] as a means to access bicyclo [4.2.0] octanes. Herein, the utility of this method is demonstrated towards the synthesis of benzocyclobutenes and a key intermediate towards the endiandric acids.
Collapse
Affiliation(s)
| | | | - M. Kevin Brown
- Indiana University, Department of Chemistry, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| |
Collapse
|
11
|
Hao ZF, Zhu SJ, Hao YJ, Zhang WH, Zhou Y, Tian YP, Lei CW. Enantioselective Synthesis of Bispiro[indanedione-oxindole-cyclopropane]s through Organocatalytic [2+1] Cycloaddition. J Org Chem 2022. [PMID: 35960861 DOI: 10.1021/acs.joc.2c01009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of compounds featuring a novel bispiro[indanedione-oxindole-cyclopropane] moiety have been synthesized through a squaramide-catalyzed [2+1] cycloaddition reaction. The tandem Michael-alkylation reaction of 2-arylidene-1,3-indanediones with 3-bromooxindoles furnished the cycloadducts in high yields with excellent diastereo- and enantioselectivities. The ammonium ylide in the catalytic process, as a key intermediate, was revealed by the high-resolution mass spectrometry study.
Collapse
Affiliation(s)
- Zhi-Feng Hao
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Shi-Jie Zhu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yong-Jia Hao
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Wen-Hui Zhang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Ying Zhou
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - You-Ping Tian
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chuan-Wen Lei
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
12
|
Brześkiewicz J, Loska R. Palladium-Catalyzed Access to Benzocyclobutenone-Derived Ketonitrones via C(sp 2)-H Functionalization. Org Lett 2022; 24:3960-3964. [PMID: 35613705 PMCID: PMC9278523 DOI: 10.1021/acs.orglett.2c01317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The palladium-catalyzed C(sp2)-H functionalization of bromoaryl aldonitrones leading to benzocyclobutenone-derived ketonitrones is described. This method allows for the preparation of a wide range of strained, four-membered ketonitrones with broad functional group tolerance. Downstream transformations of the formed products were readily demonstrated, illustrating the synthetic utility of the obtained benzocyclobutenone-derived nitrones for the construction of polycyclic nitrogen-containing scaffolds.
Collapse
Affiliation(s)
- Jakub Brześkiewicz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Rafał Loska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|