1
|
Lawing AM, McCoy M, Reinke BA, Sarkar SK, Smith FA, Wright D. A Framework for Investigating Rules of Life by Establishing Zones of Influence. Integr Comp Biol 2022; 61:2095-2108. [PMID: 34297089 PMCID: PMC8825771 DOI: 10.1093/icb/icab169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/26/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
The incredible complexity of biological processes across temporal and spatial scales hampers defining common underlying mechanisms driving the patterns of life. However, recent advances in sequencing, big data analysis, machine learning, and molecular dynamics simulation have renewed the hope and urgency of finding potential hidden rules of life. There currently exists no framework to develop such synoptic investigations. Some efforts aim to identify unifying rules of life across hierarchical levels of time, space, and biological organization, but not all phenomena occur across all the levels of these hierarchies. Instead of identifying the same parameters and rules across levels, we posit that each level of a temporal and spatial scale and each level of biological organization has unique parameters and rules that may or may not predict outcomes in neighboring levels. We define this neighborhood, or the set of levels, across which a rule functions as the zone of influence. Here, we introduce the zone of influence framework and explain using three examples: (a) randomness in biology, where we use a Poisson process to describe processes from protein dynamics to DNA mutations to gene expressions, (b) island biogeography, and (c) animal coloration. The zone of influence framework may enable researchers to identify which levels are worth investigating for a particular phenomenon and reframe the narrative of searching for a unifying rule of life to the investigation of how, when, and where various rules of life operate.
Collapse
Affiliation(s)
- A Michelle Lawing
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Michael McCoy
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Beth A Reinke
- Department of Biology, Northeastern Illinois University, IL 60625, USA
| | | | - Felisa A Smith
- Department of Biology, University of New Mexico, NM 87131, USA
| | - Derek Wright
- Department of Physics, Colorado School of Mines, CO 80401, USA
| |
Collapse
|
2
|
Jablonski NG. The evolution of human skin pigmentation involved the interactions of genetic, environmental, and cultural variables. Pigment Cell Melanoma Res 2021; 34:707-729. [PMID: 33825328 PMCID: PMC8359960 DOI: 10.1111/pcmr.12976] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022]
Abstract
The primary biological role of human skin pigmentation is as a mediator of penetration of ultraviolet radiation (UVR) into the deep layers of skin and the cutaneous circulation. Since the origin of Homo sapiens, dark, protective constitutive pigmentation and strong tanning abilities have been favored under conditions of high UVR and represent the baseline condition for modern humans. The evolution of partly depigmented skin and variable tanning abilities has occurred multiple times in prehistory, as populations have dispersed into environments with lower and more seasonal UVR regimes, with unique complements of genes and cultural practices. The evolution of extremes of dark pigmentation and depigmentation has been rare and occurred only under conditions of extremely high or low environmental UVR, promoted by positive selection on variant pigmentation genes followed by limited gene flow. Over time, the evolution of human skin pigmentation has been influenced by the nature and course of human dispersals and modifications of cultural practices, which have modified the nature and actions of skin pigmentation genes. Throughout most of prehistory and history, the evolution of human skin pigmentation has been a contingent and non-deterministic process.
Collapse
Affiliation(s)
- Nina G. Jablonski
- Department of AnthropologyThe Pennsylvania State UniversityUniversity ParkPAUSA
| |
Collapse
|
3
|
Benetos A, Aviv A. Ancestry, Telomere Length, and Atherosclerosis Risk. ACTA ACUST UNITED AC 2019; 10:CIRCGENETICS.117.001718. [PMID: 28615296 DOI: 10.1161/circgenetics.117.001718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Athanase Benetos
- From the Département de Médecine Gériatrique, CHRU de Nancy, The Institut national de la santé et de la recherche médicale, Université de Lorraine, France (A.B.); and Center of Human Development and Aging, New Jersey Medical School, Rutgers University, Newark (A.A.).
| | - Abraham Aviv
- From the Département de Médecine Gériatrique, CHRU de Nancy, The Institut national de la santé et de la recherche médicale, Université de Lorraine, France (A.B.); and Center of Human Development and Aging, New Jersey Medical School, Rutgers University, Newark (A.A.)
| |
Collapse
|
4
|
Delhey K. A review of Gloger's rule, an ecogeographical rule of colour: definitions, interpretations and evidence. Biol Rev Camb Philos Soc 2019; 94:1294-1316. [DOI: 10.1111/brv.12503] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Kaspar Delhey
- School of Biological SciencesMonash University 25 Rainforest Walk, 3800 Clayton Victoria Australia
| |
Collapse
|
5
|
Bradbury C, Köttgen A, Staubach F. Off-target phenotypes in forensic DNA phenotyping and biogeographic ancestry inference: A resource. Forensic Sci Int Genet 2018; 38:93-104. [PMID: 30391626 DOI: 10.1016/j.fsigen.2018.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/27/2018] [Accepted: 10/13/2018] [Indexed: 01/04/2023]
Abstract
With recent advances in DNA sequencing technologies it has become feasible and cost effective to genotype larger marker sets for forensic purposes. Two technologies that make use of the larger marker sets have come into focus in forensic research and applications; inference of biogeographic ancestry (BGA) and forensic DNA phenotyping (FDP). These methods hold the promise to reveal information about a yet unknown perpetrator from a DNA sample. In contrast, DNA-profiling, that is a standard practice in case work, relies on matching DNA-profiles between crime scene material and suspects on a database of DNA-profiles. Markers for DNA-profiling were developed under the premise to reveal as little additional information about the human source of the profile as possible, the rationale being that personal privacy rights have to be balanced against the public interest in solving a crime. The same argument holds for markers used in BGA and FDP; these markers might also reveal information on off-target phenotypes (OTPs), that go beyond BGA and the phenotypes targeted in FDP. In particular, health related OTPs might shift the balance between privacy protection and public interest. However, to our knowledge, there is currently no convenient resource available to incorporate knowledge on OTPs in BGA and FDP assay design and application. In order to provide such a resource, we performed a systematic search for OTPs associated with a comprehensive set of markers (1766 SNPs) used or suggested to be used for BGA inference and FDP. In this set, we identified a relatively small number of 27 SNPs (1.53%) that convey information on diverse health related OTPs such as cancer risk, induced asthma, or risk of alcoholism. Some of these SNPs are commonly used for FDP and BGA across different marker sets. We conclude that the effects of SNP markers used in FDP and BGA on OTPs are currently limited, with few exceptions that should be considered in a balanced decision on assay design and application.
Collapse
Affiliation(s)
- Cedric Bradbury
- University College Freiburg, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Dept. of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Fabian Staubach
- Institute of Biology I, Dept. of Evolutionary Biology and Ecology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.
| |
Collapse
|
6
|
Marques C, Matos V, Costa T, Zink A, Cunha E. Absence of evidence or evidence of absence? A discussion on paleoepidemiology of neoplasms with contributions from two Portuguese human skeletal reference collections (19th-20th century). INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2018; 21:83-95. [PMID: 29776881 DOI: 10.1016/j.ijpp.2017.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 03/03/2017] [Accepted: 03/05/2017] [Indexed: 06/08/2023]
Abstract
Biological, sociocultural, demographic and environmental factors are major contributors to the contemporary burden of oncological diseases. Although cancer's current epidemiological landscape is fairly well known, its past occurrence and history seem more obscure. In order to test the hypothesis that paleopathological diagnosis is an adequate measure of the prevalence of malignant neoplasms in human remains, 131 skeletons (78 females, 53 males, age-at-death range: 15-93 years) from Coimbra and Lisbon Identified Skeletal Collections, 19th/20th century (Portugal), were examined. The cause of death for all of the selected skeletons was a malignant neoplasm, as recorded in the collection's documental files. Through the application of standard paleopathological protocols, it was determined that 17.6% (n = 23) of the skeletons had unequivocal osseous signs of metastatic and/or neoplastic lesions. Forty-five percent (n = 59) had manifest osseous lesions, however the lesional patterns were not clearly pathognomonic. Although all of the analyzed individuals were documented as having succumbed to malignant neoplastic disease, a total of 37.4% (n = 49) of the individuals did not exhibit osseous abnormalities. Individuals with breast cancer often exhibited lesions. This study presents a quantitative estimate of the accuracy of paleopathological diagnosis; as well as a theoretical reflection on the burden of cancer in the past. We emphasize the need for a paradigm shift while thinking about the future of paleo-oncology.
Collapse
Affiliation(s)
- Carina Marques
- Research Centre for Anthropology and Health (CIAS), Department of Life Sciences, University of Coimbra, Coimbra, Portugal; Laboratory of Forensic Anthropology, Department of Life Sciences/Center of Functional Ecology, University of Coimbra, Coimbra, Portugal.
| | - Vítor Matos
- Research Centre for Anthropology and Health (CIAS), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Tiago Costa
- Faculty of Medicine, Lisbon University, Lisbon, Portugal
| | - Albert Zink
- Institute for Mummies and the Iceman, Drususallee 1/Viale Druso 1, 39100 Bozen-Bolzano, Italy
| | - Eugénia Cunha
- Laboratory of Forensic Anthropology, Department of Life Sciences/Center of Functional Ecology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Revuz J, Froment A. [Human pigmentation and evolution]. Ann Dermatol Venereol 2017; 144:474-480. [PMID: 28528734 DOI: 10.1016/j.annder.2017.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/23/2017] [Accepted: 03/03/2017] [Indexed: 10/19/2022]
Affiliation(s)
- J Revuz
- 11, chaussée de la Muette, 75016 Paris, France.
| | - A Froment
- Unité mixte de recherche 208, institut de recherche pour le développement, musée de l'homme, 57, rue Cuvier, CP 51, 75231 Paris cedex 05, France
| |
Collapse
|
8
|
Lucock M, Beckett E, Martin C, Jones P, Furst J, Yates Z, Jablonski NG, Chaplin G, Veysey M. UV‐associated decline in systemic folate: implications for human nutrigenetics, health, and evolutionary processes. Am J Hum Biol 2016; 29. [DOI: 10.1002/ajhb.22929] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/13/2016] [Accepted: 09/25/2016] [Indexed: 12/15/2022] Open
Affiliation(s)
- Mark Lucock
- School of Environmental and Life SciencesUniversity of NewcastlePO Box 127, Brush RdOurimbah NSW2258 Australia
| | - Emma Beckett
- School of Environmental and Life SciencesUniversity of NewcastlePO Box 127, Brush RdOurimbah NSW2258 Australia
| | - Charlotte Martin
- School of Environmental and Life SciencesUniversity of NewcastlePO Box 127, Brush RdOurimbah NSW2258 Australia
| | - Patrice Jones
- School of Environmental and Life SciencesUniversity of NewcastlePO Box 127, Brush RdOurimbah NSW2258 Australia
| | - John Furst
- School of Maths and Physical SciencesUniversity of NewcastlePO Box 127, Brush RdOurimbah NSW2258 Australia
| | - Zoe Yates
- School of Biomedical Sciences and PharmacyUniversity of NewcastlePO Box 127, Brush RdOurimbah NSW2258 Australia
| | - Nina G. Jablonski
- Anthropology DepartmentThe Pennsylvania State University409 Carpenter BuildingUniversity Park Pennsylvania16802
| | - George Chaplin
- Anthropology DepartmentThe Pennsylvania State University409 Carpenter BuildingUniversity Park Pennsylvania16802
| | - Martin Veysey
- School of Medicine and Public Health, University of Newcastle, NSW, 2308, Australia and, Central Coast Local Health DistrictTeaching and Research Unit, Gosford HospitalGosford NSW2250PO Box 361 Australia
| |
Collapse
|
9
|
Stone RC, Horvath K, Kark JD, Susser E, Tishkoff SA, Aviv A. Telomere Length and the Cancer-Atherosclerosis Trade-Off. PLoS Genet 2016; 12:e1006144. [PMID: 27386863 PMCID: PMC4936693 DOI: 10.1371/journal.pgen.1006144] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Modern humans, the longest-living terrestrial mammals, display short telomeres and repressed telomerase activity in somatic tissues compared with most short-living small mammals. The dual trait of short telomeres and repressed telomerase might render humans relatively resistant to cancer compared with short-living small mammals. However, the trade-off for cancer resistance is ostensibly increased age-related degenerative diseases, principally in the form of atherosclerosis. In this communication, we discuss (a) the genetics of human telomere length, a highly heritable complex trait that is influenced by genetic ancestry, sex, and paternal age at conception, (b) how cancer might have played a role in the evolution of telomere biology across mammals, (c) evidence that in modern humans telomere length is a determinant (rather than only a biomarker) of cancer and atherosclerosis, and (d) the potential influence of relatively recent evolutionary forces in fashioning the variation in telomere length across and within populations, and their likely lasting impact on major diseases in humans. Finally, we propose venues for future research on human telomere genetics in the context of its potential role in shaping the modern human lifespan.
Collapse
Affiliation(s)
- Rivka C. Stone
- The Center of Human Development and Aging, New Jersey Medical School, Rutgers, Newark, New Jersey, United States of America
| | - Kent Horvath
- The Center of Human Development and Aging, New Jersey Medical School, Rutgers, Newark, New Jersey, United States of America
| | - Jeremy D. Kark
- Epidemiology Unit, Hebrew University–Hadassah School of Public Health and Community Medicine, Jerusalem, Israel
| | - Ezra Susser
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, United States of America
- New York State Psychiatric Institute, New York, New York, United States of America
| | - Sarah A. Tishkoff
- Department of Genetics, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Abraham Aviv
- The Center of Human Development and Aging, New Jersey Medical School, Rutgers, Newark, New Jersey, United States of America
| |
Collapse
|
10
|
Elias PM, Williams ML. Basis for the gain and subsequent dilution of epidermal pigmentation during human evolution: The barrier and metabolic conservation hypotheses revisited. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 161:189-207. [PMID: 27324932 DOI: 10.1002/ajpa.23030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 12/25/2022]
Abstract
The evolution of human skin pigmentation must address both the initial evolution of intense epidermal pigmentation in hominins, and its subsequent dilution in modern humans. While many authorities believe that epidermal pigmentation evolved to protect against either ultraviolet B (UV-B) irradiation-induced mutagenesis or folic acid photolysis, we hypothesize that pigmentation augmented the epidermal barriers by shifting the UV-B dose-response curve from toxic to beneficial. Whereas erythemogenic UV-B doses produce apoptosis and cell death, suberythemogenic doses benefit permeability and antimicrobial function. Heavily melanized melanocytes acidify the outer epidermis and emit paracrine signals that augment barrier competence. Modern humans, residing in the cooler, wetter climes of south-central Europe and Asia, initially retained substantial pigmentation. While their outdoor lifestyles still permitted sufficient cutaneous vitamin D3 (VD3) synthesis, their marginal nutritional status, coupled with cold-induced caloric needs, selected for moderate pigment reductions that diverted limited nutritional resources towards more urgent priorities (=metabolic conservation). The further pigment-dilution that evolved as humans reached north-central Europe (i.e., northern France, Germany), likely facilitated cutaneous VD3 synthesis, while also supporting ongoing, nutritional requirements. But at still higher European latitudes where little UV-B breaches the atmosphere (i.e., present-day UK, Scandinavia, Baltic States), pigment dilution alone could not suffice. There, other nonpigment-related mutations evolved to facilitate VD3 production; for example, in the epidermal protein, filaggrin, resulting in reduced levels of its distal metabolite, trans-urocanic acid, a potent UV-B chromophore. Thus, changes in human pigmentation reflect a complex interplay between latitude, climate, diet, lifestyle, and shifting metabolic priorities.
Collapse
Affiliation(s)
- Peter M Elias
- Department of Veterans Affairs Medical Center, Dermatology Service, University of California San Francisco, California. .,Department of Dermatology, Dermatology Service, University of California San Francisco, California.
| | - Mary L Williams
- Department of Dermatology, University of California, San Francisco, California.,Department of Pediatrics, University of California, San Francisco, California
| |
Collapse
|
11
|
Hansen MEB, Hunt SC, Stone RC, Horvath K, Herbig U, Ranciaro A, Hirbo J, Beggs W, Reiner AP, Wilson JG, Kimura M, De Vivo I, Chen MM, Kark JD, Levy D, Nyambo T, Tishkoff SA, Aviv A. Shorter telomere length in Europeans than in Africans due to polygenetic adaptation. Hum Mol Genet 2016; 25:2324-2330. [PMID: 26936823 DOI: 10.1093/hmg/ddw070] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/26/2016] [Indexed: 12/17/2022] Open
Abstract
Leukocyte telomere length (LTL), which reflects telomere length in other somatic tissues, is a complex genetic trait. Eleven SNPs have been shown in genome-wide association studies to be associated with LTL at a genome-wide level of significance within cohorts of European ancestry. It has been observed that LTL is longer in African Americans than in Europeans. The underlying reason for this difference is unknown. Here we show that LTL is significantly longer in sub-Saharan Africans than in both Europeans and African Americans. Based on the 11 LTL-associated alleles and genetic data in phase 3 of the 1000 Genomes Project, we show that the shifts in allele frequency within Europe and between Europe and Africa do not fit the pattern expected by neutral genetic drift. Our findings suggest that differences in LTL within Europeans and between Europeans and Africans is influenced by polygenic adaptation and that differences in LTL between Europeans and Africans might explain, in part, ethnic differences in risks for human diseases that have been linked to LTL.
Collapse
Affiliation(s)
- Matthew E B Hansen
- Department of Genetics and Center of Excellence in Environmental Toxicology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven C Hunt
- Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar, Cardiovascular Genetics Division, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Rivka C Stone
- The Center of Human Development and Aging, New Jersey Medical School, Rutgers, Newark, NJ 07103, USA
| | - Kent Horvath
- The Center of Human Development and Aging, New Jersey Medical School, Rutgers, Newark, NJ 07103, USA
| | - Utz Herbig
- The Center of Human Development and Aging, New Jersey Medical School, Rutgers, Newark, NJ 07103, USA
| | | | | | | | - Alexander P Reiner
- Fred Hutchinson Cancer Research Center, Department of Epidemiology, University of Washington, Seattle, WA 98109, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi, Jackson, MS 38677, USA
| | - Masayuki Kimura
- The Center of Human Development and Aging, New Jersey Medical School, Rutgers, Newark, NJ 07103, USA
| | - Immaculata De Vivo
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Maxine M Chen
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jeremy D Kark
- Epidemiology Unit, Hebrew University-Hadassah School of Public Health and Community Medicine, Jerusalem 9112001, Israel
| | - Daniel Levy
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA 01702, USA and
| | - Thomas Nyambo
- Department of Biochemistry, Muhimbili University of Health and Allied Sciences, Dares Salaam 35091, Tanzania
| | - Sarah A Tishkoff
- Department of Genetics and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Abraham Aviv
- The Center of Human Development and Aging, New Jersey Medical School, Rutgers, Newark, NJ 07103, USA,
| |
Collapse
|