1
|
Cuesta‐Aguirre DR, Amor‐Jimenez C, Malgosa A, Santos C. A Post-Mortem Molecular Damage Profile in the Ancient Human Mitochondrial DNA. Mol Ecol Resour 2025; 25:e14061. [PMID: 39776197 PMCID: PMC11969630 DOI: 10.1111/1755-0998.14061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/09/2024] [Accepted: 10/01/2024] [Indexed: 01/11/2025]
Abstract
Mitochondrial DNA (mtDNA) analysis is crucial for understanding human population structure and genetic diversity. However, post-mortem DNA damage poses challenges, that make analysis difficult. DNA preservation is affected by environmental conditions which, among other factors, complicates the differentiation of endogenous variants from artefacts in ancient mtDNA mix profiles. This study aims to develop a molecular damage profile for ancient mtDNA that can become a useful tool in analysing mtDNA from ancient remains. A dataset of 427 whole genomes or capture of mtDNA sequences from individuals representing different historical periods and climatic regions was compiled from the ENA database. Present-day and UDG-treated ancient samples were also included and used to establish levels of damaged reads. Results indicated that samples from cold regions exhibited the lowest percentage of damaged reads, followed by arid, cold, tropical and temperate regions, with significant differences observed between cold and temperate regions. A global damage profile was generated, identifying 2933 positions (25% of the positions considered) with damage in more than 23.8% of the samples analysed, deemed as damage hotspots. Notably, 2856 of these hotspots had never been reported as damage or mutational hotspots, or heteroplasmic positions. Damage hotspot frequency by position was slightly higher in the non-coding region compared with the coding region. In conclusion, this study provides a molecular damage profile for ancient mtDNA analysis that is expected to be a valuable tool in the interpretation of mtDNA variation in ancient samples.
Collapse
Affiliation(s)
- Daniel R. Cuesta‐Aguirre
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and EcologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Cristina Amor‐Jimenez
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and EcologyUniversitat Autònoma de BarcelonaBarcelonaSpain
- Centre de Recerca Ecològica i d'Aplicacions ForestalsUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Assumpció Malgosa
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and EcologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Cristina Santos
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and EcologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| |
Collapse
|
2
|
Chyleński M, Makarowicz P, Juras A, Krzewińska M, Pospieszny Ł, Ehler E, Breszka A, Górski J, Taras H, Szczepanek A, Polańska M, Włodarczak P, Lasota-Kuś A, Wójcik I, Romaniszyn J, Szmyt M, Kośko A, Ignaczak M, Sadowski S, Matoga A, Grossman A, Ilchyshyn V, Yahodinska MO, Romańska A, Tunia K, Przybyła M, Grygiel R, Szostek K, Dabert M, Götherström A, Jakobsson M, Malmström H. Patrilocality and hunter-gatherer-related ancestry of populations in East-Central Europe during the Middle Bronze Age. Nat Commun 2023; 14:4395. [PMID: 37528090 PMCID: PMC10393988 DOI: 10.1038/s41467-023-40072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/07/2023] [Indexed: 08/03/2023] Open
Abstract
The demographic history of East-Central Europe after the Neolithic period remains poorly explored, despite this region being on the confluence of various ecological zones and cultural entities. Here, the descendants of societies associated with steppe pastoralists form Early Bronze Age were followed by Middle Bronze Age populations displaying unique characteristics. Particularly, the predominance of collective burials, the scale of which, was previously seen only in the Neolithic. The extent to which this re-emergence of older traditions is a result of genetic shift or social changes in the MBA is a subject of debate. Here by analysing 91 newly generated genomes from Bronze Age individuals from present Poland and Ukraine, we discovered that Middle Bronze Age populations were formed by an additional admixture event involving a population with relatively high proportions of genetic component associated with European hunter-gatherers and that their social structure was based on, primarily patrilocal, multigenerational kin-groups.
Collapse
Affiliation(s)
- Maciej Chyleński
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Przemysław Makarowicz
- Faculty of Archaeology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 7, 61- 614, Poznań, Poland
| | - Anna Juras
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Maja Krzewińska
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Lilla Frescativägen 7, SE-106 91, Stockholm, Sweden
- Centre for Palaeogentics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden
| | - Łukasz Pospieszny
- Institute of Archaeology, University of Gdańsk, ul. Bielańska 5, 80-851, Gdańsk, Poland
- Department of Anthropology and Archaeology, University of Bristol, 43 Woodland Road, Bristol, BS8 1UU, UK
| | - Edvard Ehler
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Prague, Czech Republic
| | - Agnieszka Breszka
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Jacek Górski
- Department of History and Cultural Heritage, University of Pope Jan Paweł II, Kanonicza 9, 31-002, Cracow, Poland
- Archaeological Museum in Cracow, Senacka 3, 31-002, Cracow, Poland
| | - Halina Taras
- Institute of Archaeology, Maria Curie-Skłodowska University, M.C.-Skłodowska sq. 4, 20-031, Lublin, Poland
| | - Anita Szczepanek
- Institute of Archaeology and Ethnology, Polish Academy of Science, Sławkowska 17, 31-016, Cracow, Poland
| | - Marta Polańska
- Department of Material and Spiritual Culture, Lublin Museum, Zamkowa 9, 20-117, Lublin, Poland
| | - Piotr Włodarczak
- Institute of Archaeology and Ethnology, Polish Academy of Science, Sławkowska 17, 31-016, Cracow, Poland
| | - Anna Lasota-Kuś
- Institute of Archaeology and Ethnology, Polish Academy of Science, Sławkowska 17, 31-016, Cracow, Poland
| | - Irena Wójcik
- Archaeological Museum in Cracow, Senacka 3, 31-002, Cracow, Poland
| | - Jan Romaniszyn
- Faculty of Archaeology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 7, 61- 614, Poznań, Poland
| | - Marzena Szmyt
- Faculty of Archaeology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 7, 61- 614, Poznań, Poland
- Archaeological Museum in Poznań, Wodna 27, 61-781, Poznań, Poland
| | - Aleksander Kośko
- Faculty of Archaeology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 7, 61- 614, Poznań, Poland
| | - Marcin Ignaczak
- Faculty of Archaeology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 7, 61- 614, Poznań, Poland
| | - Sylwester Sadowski
- Institute of Archaeology, Maria Curie-Skłodowska University, M.C.-Skłodowska sq. 4, 20-031, Lublin, Poland
| | - Andrzej Matoga
- Archaeological Museum in Cracow, Senacka 3, 31-002, Cracow, Poland
| | - Anna Grossman
- Muzeum Archeologiczne w Biskupinie, Biskupin 17, 88-410, Gąsawa, Poland
| | - Vasyl Ilchyshyn
- Zaliztsi Museum of Local Lore, Schevchenka 51, Zalizhtsi, 47243, Ternopil reg, Ukraine
| | - Maryna O Yahodinska
- Ternopil Regional Center for Protection and Research of Cultural Heritage Sites, Kyyivs'ka 3а, 46016, Ternopil, Ukraine
| | - Adriana Romańska
- Wojewódzki Urząd Ochrony Zabytków, Gołębia 2, 61-840, Poznań, Poland
| | - Krzysztof Tunia
- Institute of Archaeology and Ethnology, Polish Academy of Science, Sławkowska 17, 31-016, Cracow, Poland
| | - Marcin Przybyła
- Archaeological company "Dolmen Marcin Przybyła, Michał Podsiadło s.c.", Serkowskiego Sq. 8/3, 30-512, Cracow, Poland
| | - Ryszard Grygiel
- Museum of Archaeology and Ethnography in Łódź, Plac Wolności 14, 91-415, Łódź, Poland
| | - Krzysztof Szostek
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938, Warsaw, Poland
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Anders Götherström
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Lilla Frescativägen 7, SE-106 91, Stockholm, Sweden
- Centre for Palaeogentics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, SE-752 36, Uppsala, Sweden
- Centre for Anthropological Research, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa
- SciLifeLab, Stockholm and Uppsala, Sweden
| | - Helena Malmström
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, SE-752 36, Uppsala, Sweden.
- Centre for Anthropological Research, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa.
| |
Collapse
|
3
|
Pospieszny Ł, Makarowicz P, Lewis J, Szczepanek A, Górski J, Włodarczak P, Romaniszyn J, Grygiel R, Belka Z. Assessing the mobility of Bronze Age societies in East-Central Europe. A strontium and oxygen isotope perspective on two archaeological sites. PLoS One 2023; 18:e0282472. [PMID: 36930597 PMCID: PMC10022790 DOI: 10.1371/journal.pone.0282472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
European Bronze Age societies are generally characterised by increased mobility and the application of isotopic methods to archaeology has allowed the rate and range of human travels to be quantified. However, little is known about the mobility of the people inhabiting East-Central Europe in the late Early and Middle Bronze Age (1950-1250 BC) whose primary subsistence strategy was herding supported by crop cultivation. This paper presents the results of strontium (87Sr/86Sr) and oxygen (δ18O) isotope analyses in the enamel of people buried in collective graves at the cemeteries in Gustorzyn and Żerniki Górne. These sites are located in Kujawy and the Nida Basin, a lowland and an upland region with clearly different environmental conditions, respectively. Both sites are classified as belonging to the Trzciniec cultural circle and were used between 16th and 13th centuries BC. Among the 34 examined individuals only an adult female from Gustorzyn can be assessed as non-local based on both 87Sr/86Sr and δ18O signatures in her first molar. This may indicate the practice of exogamy in the studied population but more generally corresponds with the hypothesis of limited mobility within these societies, as has previously been inferred from archaeological evidence, anthropological analysis, and stable isotope-based diet reconstruction. New and existing data evaluated in this paper show that the 87Sr/86Sr variability in the natural environment of both regions is relatively high, allowing the tracking of short-range human mobility. A series of oxygen isotope analyses (conducted for all but one individuals studied with strontium isotopes) indicates that δ18O ratios measured in phosphate are in agreement with the predicted modern oxygen isotope precipitation values, and that this method is useful in detecting travels over larger distances. The challenges of using both 87Sr/86Sr and δ18O isotopic systems in provenance studies in the glacial landscapes of temperate Europe are also discussed.
Collapse
Affiliation(s)
- Łukasz Pospieszny
- Institute of Archaeology, University of Gdańsk, Gdańsk, Poland
- Department of Anthropology and Archaeology, University of Bristol, Bristol, United Kingdom
| | | | - Jamie Lewis
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Anita Szczepanek
- Institute of Archaeology and Ethnology, Polish Academy of Science, Kraków, Poland
- Department of Anatomy, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Jacek Górski
- Department of History and Cultural Heritage, University of Pope Jan Paweł II, Kraków, Poland
- Archaeological Museum in Cracow, Kraków, Poland
| | - Piotr Włodarczak
- Institute of Archaeology and Ethnology, Polish Academy of Science, Kraków, Poland
| | - Jan Romaniszyn
- Faculty of Archaeology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | - Zdzislaw Belka
- Isotope Research Unit, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
4
|
Ma B, Chen J, Yang X, Bai J, Ouyang S, Mo X, Chen W, Wang CC, Hai X. The Genetic Structure and East-West Population Admixture in Northwest China Inferred From Genome-Wide Array Genotyping. Front Genet 2022; 12:795570. [PMID: 34992635 PMCID: PMC8724515 DOI: 10.3389/fgene.2021.795570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/06/2021] [Indexed: 01/02/2023] Open
Abstract
Northwest China is a contacting region for East and West Eurasia and an important center for investigating the migration and admixture history of human populations. However, the comprehensive genetic structure and admixture history of the Altaic speaking populations and Hui group in Northwest China were still not fully characterized due to insufficient sampling and the lack of genome-wide data. Thus, We genotyped genome-wide SNPs for 140 individuals from five Chinese Mongolic, Turkic speaking groups including Dongxiang, Bonan, Yugur, and Salar, as well as the Hui group. Analysis based on allele-sharing and haplotype-sharing were used to elucidate the population history of Northwest Chinese populations, including PCA, ADMIXTURE, pairwise Fst genetic distance, f-statistics, qpWave/qpAdm and ALDER, fineSTRUCTURE and GLOBETROTTER. We observed Dongxiang, Bonan, Yugur, Salar, and Hui people were admixed populations deriving ancestry from both East and West Eurasians, with the proportions of West Eurasian related contributions ranging from 9 to 15%. The genetic admixture was probably driven by male-biased migration- showing a higher frequency of West Eurasian related Y chromosomal lineages than that of mtDNA detected in Northwest China. ALDER-based admixture and haplotype-based GLOBETROTTER showed this observed West Eurasian admixture signal was introduced into East Eurasia approximately 700 ∼1,000 years ago. Generally, our findings provided supporting evidence that the flourish transcontinental communication between East and West Eurasia played a vital role in the genetic formation of northwest Chinese populations.
Collapse
Affiliation(s)
- Bin Ma
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Northwest Minzu University, Lanzhou, China
| | - Jinwen Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Jingya Bai
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Northwest Minzu University, Lanzhou, China
| | - Siwei Ouyang
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Northwest Minzu University, Lanzhou, China
| | - Xiaodan Mo
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Northwest Minzu University, Lanzhou, China
| | - Wangsheng Chen
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Northwest Minzu University, Lanzhou, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Xiangjun Hai
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
5
|
The Sequence Analysis of Mitochondrial DNA Revealed Some Major Centers of Horse Domestications: The Archaeologist's Cut. J Equine Vet Sci 2021; 109:103830. [PMID: 34871751 DOI: 10.1016/j.jevs.2021.103830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022]
Abstract
The question about the time and the place of horse domestication, a process which had a profound impact on the progress of mankind, is disputable. According to the most widely accepted hypothesis, the earliest domestication of the horse happened in the western parts of the Eurasian steppes, between the Northern Black Sea region and present-day Kazakhstan and Turkmenistan. It seems that it occurred not earlier than the first half and most probably during the middle (even the last third) of the fourth millennium BC (from ∼ 5.5 kya). The next steps of large-scale horse breeding occurred almost simultaneously in Eurasia and North Africa due to the development of the social structure of human communities. On the other hand, the morphological differences between wild and domestic animals are rather vague and the genetic introgression between them is speculative. In this review, we have tried to gather all available scientific data on the existing possible hypotheses for the earliest domestication of the horse, as well as to highlight some data on the most plausible ones. This is due to the frequency of some significant data on the frequency of strictly defined mitotypes in different historical periods of human civilizations existing in the same periods.
Collapse
|
6
|
Juras A, Ehler E, Chyleński M, Pospieszny Ł, Spinek AE, Malmström H, Krzewińska M, Szostek K, Pasterkiewicz W, Florek M, Wilk S, Mnich B, Kruk J, Szmyt M, Kozieł S, Götherström A, Jakobsson M, Dabert M. Maternal genetic origin of the late and final Neolithic human populations from present-day Poland. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:223-236. [PMID: 34308549 DOI: 10.1002/ajpa.24372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/22/2021] [Accepted: 07/07/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVE We aim to identify maternal genetic affinities between the Middle to Final Neolithic (3850-2300 BC) populations from present-day Poland and possible genetic influences from the Pontic steppe. MATERIALS AND METHODS We conducted ancient DNA studies from populations associated with Złota, Globular Amphora, Funnel Beaker, and Corded Ware cultures (CWC). We sequenced genomic libraries on Illumina platform to generate 86 complete ancient mitochondrial genomes. Some of the samples were enriched for mitochondrial DNA using hybridization capture. RESULTS The maternal genetic composition found in Złota-associated individuals resembled that found in people associated with the Globular Amphora culture which indicates that both groups likely originated from the same maternal genetic background. Further, these two groups were closely related to the Funnel Beaker culture-associated population. None of these groups shared a close affinity to CWC-associated people. Haplogroup U4 was present only in the CWC group and absent in Złota group, Globular Amphora, and Funnel Beaker cultures. DISCUSSION The prevalence of mitochondrial haplogroups of Neolithic farmer origin identified in Early, Middle and Late Neolithic populations suggests a genetic continuity of these maternal lineages in the studied area. Although overlapping in time - and to some extent - in cultural expressions, none of the studied groups (Złota, Globular Amphora, Funnel Beaker), shared a close genetic affinity to CWC-associated people, indicating a larger extent of cultural influence from the Pontic steppe than genetic exchange. The higher frequency of haplogroup U5b found in populations associated with Funnel Beaker, Globular Amphora, and Złota cultures suggest a gradual maternal genetic influx from Mesolithic hunter-gatherers. Moreover, presence of haplogroup U4 in Corded Ware groups is most likely associated with the migrations from the Pontic steppe at the end of the Neolithic and supports the observed genetic distances.
Collapse
Affiliation(s)
- Anna Juras
- Institute of Human Biology & Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
| | - Edvard Ehler
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the ASCR, v. v. i, Prague, Czech Republic
| | - Maciej Chyleński
- Institute of Human Biology & Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
| | - Łukasz Pospieszny
- Department of Anthropology and Archaeology, University of Bristol, Bristol, UK.,Institute of Archaeology and Ethnology, Polish Academy of Sciences, Poznań, Poland
| | - Anna Elżbieta Spinek
- Department of Anthropology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Helena Malmström
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Centre for Anthropological Research, University of Johannesburg, Johannesburg, South Africa
| | - Maja Krzewińska
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | - Krzysztof Szostek
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Warszawa, Poland
| | | | - Marek Florek
- Institute of Archaeology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Stanisław Wilk
- Institute of Archaeology, Jagiellonian University, Kraków, Poland.,The Karkonosze Museum in Jelenia Góra, Jelenia Góra, Poland
| | - Barbara Mnich
- Department of Anthropology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Kraków, Poland
| | - Janusz Kruk
- Polish Academy of Sciences, Institute of Archaeology and Ethnology, Kraków, Poland
| | - Marzena Szmyt
- Faculty of Archaeology, Adam Mickiewicz University in Poznań, Poznań, Poland.,Archaeological Museum, Poznań, Poland
| | - Sławomir Kozieł
- Department of Anthropology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anders Götherström
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Centre for Anthropological Research, University of Johannesburg, Johannesburg, South Africa
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
| |
Collapse
|
7
|
Diroma MA, Modi A, Lari M, Sineo L, Caramelli D, Vai S. New Insights Into Mitochondrial DNA Reconstruction and Variant Detection in Ancient Samples. Front Genet 2021; 12:619950. [PMID: 33679884 PMCID: PMC7930628 DOI: 10.3389/fgene.2021.619950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/12/2021] [Indexed: 11/13/2022] Open
Abstract
Ancient DNA (aDNA) studies are frequently focused on the analysis of the mitochondrial DNA (mtDNA), which is much more abundant than the nuclear genome, hence can be better retrieved from ancient remains. However, postmortem DNA damage and contamination make the data analysis difficult because of DNA fragmentation and nucleotide alterations. In this regard, the assessment of the heteroplasmic fraction in ancient mtDNA has always been considered an unachievable goal due to the complexity in distinguishing true endogenous variants from artifacts. We implemented and applied a computational pipeline for mtDNA analysis to a dataset of 30 ancient human samples from an Iron Age necropolis in Polizzello (Sicily, Italy). The pipeline includes several modules from well-established tools for aDNA analysis and a recently released variant caller, which was specifically conceived for mtDNA, applied for the first time to aDNA data. Through a fine-tuned filtering on variant allele sequencing features, we were able to accurately reconstruct nearly complete (>88%) mtDNA genome for almost all the analyzed samples (27 out of 30), depending on the degree of preservation and the sequencing throughput, and to get a reliable set of variants allowing haplogroup prediction. Additionally, we provide guidelines to deal with possible artifact sources, including nuclear mitochondrial sequence (NumtS) contamination, an often-neglected issue in ancient mtDNA surveys. Potential heteroplasmy levels were also estimated, although most variants were likely homoplasmic, and validated by data simulations, proving that new sequencing technologies and software are sensitive enough to detect partially mutated sites in ancient genomes and discriminate true variants from artifacts. A thorough functional annotation of detected and filtered mtDNA variants was also performed for a comprehensive evaluation of these ancient samples.
Collapse
Affiliation(s)
- Maria Angela Diroma
- Dipartimento di Biologia, Università degli Studi di Firenze, Florence, Italy
| | - Alessandra Modi
- Dipartimento di Biologia, Università degli Studi di Firenze, Florence, Italy
| | - Martina Lari
- Dipartimento di Biologia, Università degli Studi di Firenze, Florence, Italy
| | - Luca Sineo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy
| | - David Caramelli
- Dipartimento di Biologia, Università degli Studi di Firenze, Florence, Italy
| | - Stefania Vai
- Dipartimento di Biologia, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
8
|
Modi A, Lancioni H, Cardinali I, Capodiferro MR, Rambaldi Migliore N, Hussein A, Strobl C, Bodner M, Schnaller L, Xavier C, Rizzi E, Bonomi Ponzi L, Vai S, Raveane A, Cavadas B, Semino O, Torroni A, Olivieri A, Lari M, Pereira L, Parson W, Caramelli D, Achilli A. The mitogenome portrait of Umbria in Central Italy as depicted by contemporary inhabitants and pre-Roman remains. Sci Rep 2020; 10:10700. [PMID: 32612271 PMCID: PMC7329865 DOI: 10.1038/s41598-020-67445-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022] Open
Abstract
Umbria is located in Central Italy and took the name from its ancient inhabitants, the Umbri, whose origins are still debated. Here, we investigated the mitochondrial DNA (mtDNA) variation of 545 present-day Umbrians (with 198 entire mitogenomes) and 28 pre-Roman individuals (obtaining 19 ancient mtDNAs) excavated from the necropolis of Plestia. We found a rather homogeneous distribution of western Eurasian lineages across the region, with few notable exceptions. Contemporary inhabitants of the eastern part, delimited by the Tiber River and the Apennine Mountains, manifest a peculiar mitochondrial proximity to central-eastern Europeans, mainly due to haplogroups U4 and U5a, and an overrepresentation of J (30%) similar to the pre-Roman remains, also excavated in East Umbria. Local genetic continuities are further attested to by six terminal branches (H1e1, J1c3, J2b1, U2e2a, U8b1b1 and K1a4a) shared between ancient and modern mitogenomes. Eventually, we identified multiple inputs from various population sources that likely shaped the mitochondrial gene pool of ancient Umbri over time, since early Neolithic, including gene flows with central-eastern Europe. This diachronic mtDNA portrait of Umbria fits well with the genome-wide population structure identified on the entire peninsula and with historical sources that list the Umbri among the most ancient Italic populations.
Collapse
Affiliation(s)
- Alessandra Modi
- Department of Biology, University of Florence, 50122, Florence, Italy
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| | - Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Marco R Capodiferro
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Nicola Rambaldi Migliore
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Abir Hussein
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Christina Strobl
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Lisa Schnaller
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Catarina Xavier
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Ermanno Rizzi
- Istituto di Tecnologie Biomediche, CNR, Segrate, 20090, Milan, Italy
| | | | - Stefania Vai
- Department of Biology, University of Florence, 50122, Florence, Italy
| | - Alessandro Raveane
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Bruno Cavadas
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Porto, Portugal.,i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), 4200-135, Porto, Portugal
| | - Ornella Semino
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Antonio Torroni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Martina Lari
- Department of Biology, University of Florence, 50122, Florence, Italy
| | - Luisa Pereira
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Porto, Portugal.,i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), 4200-135, Porto, Portugal
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria.,Forensic Science Program, The Pennsylvania State University, University Park, PA, 16801, USA
| | - David Caramelli
- Department of Biology, University of Florence, 50122, Florence, Italy
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy.
| |
Collapse
|