1
|
Kulminski AM, Jain‐Washburn E, Nazarian A, Wilkins HM, Veatch O, Swerdlow RH, Honea RA. Association of APOE alleles and polygenic profiles comprising APOE-TOMM40-APOC1 variants with Alzheimer's disease neuroimaging markers. Alzheimers Dement 2025; 21:e14445. [PMID: 39713891 PMCID: PMC11848341 DOI: 10.1002/alz.14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/28/2024] [Accepted: 11/10/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION TOMM40 and APOC1 variants can modulate the APOE-ε4-related Alzheimer's disease (AD) risk by up to fourfold. We aim to investigate whether the genetic modulation of ε4-related AD risk is reflected in brain morphology. METHODS We tested whether 27 magnetic resonance imaging-derived neuroimaging markers of neurodegeneration (volume and thickness in temporo-limbic regions) are associated with APOE-TOMM40-APOC1 polygenic profiles using the National Alzheimer's Coordinating Center Uniform Data Set linked to the AD Genetic Consortium data. RESULTS All brain regions studied using structural phenotypes were smaller in individuals with AD. The ε4 allele was associated with smaller limbic (entorhinal, hippocampus, parahippocampus) brain volume and cortical thickness in AD cases than controls. There were significant differences in the associations for the higher-risk and lower-risk ε4-bearing APOE-TOMM40-APOC1 profiles with temporo-limbic region markers. DISCUSSION The APOE-AD heterogeneity may be partly attributed to the modulating role of the TOMM40 and APOC1 genes in the APOE cluster. HIGHLIGHTS The ε4 allele is associated with smaller values of neuroimaging markers in AD cases. Larger values of neuroimaging markers may protect against AD in the ε4 carriers. TOMM40 and APOC1 variants differentiate AD risk in the ε4 carriers. The same variants can differentiate the links between ε4 and neuroimaging markers.
Collapse
Affiliation(s)
- Alexander M. Kulminski
- Biodemography of Aging Research UnitSocial Science Research InstituteDuke UniversityDurhamNorth CarolinaUSA
| | - Ethan Jain‐Washburn
- Biodemography of Aging Research UnitSocial Science Research InstituteDuke UniversityDurhamNorth CarolinaUSA
| | - Alireza Nazarian
- Biodemography of Aging Research UnitSocial Science Research InstituteDuke UniversityDurhamNorth CarolinaUSA
| | - Heather M. Wilkins
- Department of NeurologyUniversity of Kansas School of MedicineKansas CityKansasUSA
- University of Kansas Alzheimer's Disease CenterUniversity of Kansas School of MedicineKansas CityKansasUSA
| | - Olivia Veatch
- University of Kansas Alzheimer's Disease CenterUniversity of Kansas School of MedicineKansas CityKansasUSA
- Department of PsychiatryUniversity of Kansas School of MedicineKansas CityKansasUSA
| | - Russell H. Swerdlow
- Department of NeurologyUniversity of Kansas School of MedicineKansas CityKansasUSA
- University of Kansas Alzheimer's Disease CenterUniversity of Kansas School of MedicineKansas CityKansasUSA
| | - Robyn A. Honea
- Department of NeurologyUniversity of Kansas School of MedicineKansas CityKansasUSA
- University of Kansas Alzheimer's Disease CenterUniversity of Kansas School of MedicineKansas CityKansasUSA
| |
Collapse
|
2
|
Nazarian A, Morado M, Kulminski AM. Complex genetic interactions affect susceptibility to Alzheimer's disease risk in the BIN1 and MS4A6A loci. GeroScience 2025:10.1007/s11357-024-01477-6. [PMID: 39751715 DOI: 10.1007/s11357-024-01477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/14/2024] [Indexed: 01/04/2025] Open
Abstract
Genetics is the second strongest risk factor for Alzheimer's disease (AD) after age. More than 70 loci have been implicated in AD susceptibility so far, and the genetic architecture of AD entails both additive and nonadditive contributions from these loci. To better understand nonadditive impact of single-nucleotide polymorphisms (SNPs) on AD risk, we examined individual, joint, and interacting (SNPxSNP) effects of 139 and 66 SNPs mapped to the BIN1 and MS4A6A AD-associated loci, respectively. The analyses were conducted by fitting three respective dominant allelic-effect models using data from four independent studies. Joint effects were analyzed by considering pairwise combinations of genotypes of the selected SNPs, i.e., compound genotypes (CompG). The individual SNP analyses showed associations of 18 BIN1 SNPs and 4 MS4A6A SNPs with AD. We identified 589 BIN1 and 217 MS4A6A SNP pairs associated with AD in the CompG analysis, although their individual SNPs were not linked to AD independently. Notably, 34 BIN1 and 10 MS4A6A SNP pairs exhibited both significant SNPxSNP interaction effects and significant CompG effects. The vast majority of nonadditive effects were captured through the CompG analysis. These results expand the current understanding of the contributions of the BIN1 and MS4A6A loci to AD susceptibility. The identified nonadditive effects suggest a significant genetic modulation mechanism underlying the genetic heterogeneity of AD in these loci. Our findings highlight the importance of considering nonadditive genetic impacts on AD risk beyond the traditional SNPxSNP approximation, as they may uncover critical mechanisms not apparent when examining SNPs individually.
Collapse
Affiliation(s)
- Alireza Nazarian
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St, Durham, NC, 27705, USA.
| | - Marissa Morado
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St, Durham, NC, 27705, USA
| | - Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St, Durham, NC, 27705, USA.
| |
Collapse
|
3
|
Nazarian A, Cook B, Morado M, Kulminski AM. Interaction Analysis Reveals Complex Genetic Associations with Alzheimer's Disease in the CLU and ABCA7 Gene Regions. Genes (Basel) 2023; 14:1666. [PMID: 37761806 PMCID: PMC10531324 DOI: 10.3390/genes14091666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Sporadic Alzheimer's disease (AD) is a polygenic neurodegenerative disorder. Single-nucleotide polymorphisms (SNPs) in multiple genes (e.g., CLU and ABCA7) have been associated with AD. However, none of them were characterized as causal variants that indicate the complex genetic architecture of AD, which is likely affected by individual variants and their interactions. We performed a meta-analysis of four independent cohorts to examine associations of 32 CLU and 50 ABCA7 polymorphisms as well as their 496 and 1225 pair-wise interactions with AD. The single SNP analyses revealed that six CLU and five ABCA7 SNPs were associated with AD. Ten of them were previously not reported. The interaction analyses identified AD-associated compound genotypes for 25 CLU and 24 ABCA7 SNP pairs, whose comprising SNPs were not associated with AD individually. Three and one additional CLU and ABCA7 pairs composed of the AD-associated SNPs showed partial interactions as the minor allele effect of one SNP in each pair was intensified in the absence of the minor allele of the other SNP. The interactions identified here may modulate associations of the CLU and ABCA7 variants with AD. Our analyses highlight the importance of the roles of combinations of genetic variants in AD risk assessment.
Collapse
Affiliation(s)
- Alireza Nazarian
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA (M.M.)
| | | | | | - Alexander M. Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA (M.M.)
| |
Collapse
|
4
|
Nazarian A, Philipp I, Culminskaya I, He L, Kulminski AM. Inter- and intra-chromosomal modulators of the APOE ɛ2 and ɛ4 effects on the Alzheimer's disease risk. GeroScience 2023; 45:233-247. [PMID: 35809216 PMCID: PMC9886755 DOI: 10.1007/s11357-022-00617-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/24/2022] [Indexed: 02/03/2023] Open
Abstract
The mechanisms of incomplete penetrance of risk-modifying impacts of apolipoprotein E (APOE) ε2 and ε4 alleles on Alzheimer's disease (AD) have not been fully understood. We performed genome-wide analysis of differences in linkage disequilibrium (LD) patterns between 6,136 AD-affected and 10,555 AD-unaffected subjects from five independent studies to explore whether the association of the APOE ε2 allele (encoded by rs7412 polymorphism) and ε4 allele (encoded by rs429358 polymorphism) with AD was modulated by autosomal polymorphisms. The LD analysis identified 24 (mostly inter-chromosomal) and 57 (primarily intra-chromosomal) autosomal polymorphisms with significant differences in LD with either rs7412 or rs429358, respectively, between AD-affected and AD-unaffected subjects, indicating their potential modulatory roles. Our Cox regression analysis showed that minor alleles of four inter-chromosomal and ten intra-chromosomal polymorphisms exerted significant modulating effects on the ε2- and ε4-associated AD risks, respectively, and identified ε2-independent (rs2884183 polymorphism, 11q22.3) and ε4-independent (rs483082 polymorphism, 19q13.32) associations with AD. Our functional analysis highlighted ε2- and/or ε4-linked processes affecting the lipid and lipoprotein metabolism and cell junction organization which may contribute to AD pathogenesis. These findings provide insights into the ε2- and ε4-associated mechanisms of AD pathogenesis, underlying their incomplete penetrance.
Collapse
Affiliation(s)
- Alireza Nazarian
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St, Durham, NC, 27705, USA.
| | - Ian Philipp
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St, Durham, NC, 27705, USA
| | - Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St, Durham, NC, 27705, USA
| | - Liang He
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St, Durham, NC, 27705, USA
| | - Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St, Durham, NC, 27705, USA.
| |
Collapse
|
5
|
Kulminski AM, Feng F, Loiko E, Nazarian A, Loika Y, Culminskaya I. Prevailing Antagonistic Risks in Pleiotropic Associations with Alzheimer's Disease and Diabetes. J Alzheimers Dis 2023; 94:1121-1132. [PMID: 37355909 PMCID: PMC10666173 DOI: 10.3233/jad-230397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
BACKGROUND The lack of efficient preventive interventions against Alzheimer's disease (AD) calls for identifying efficient modifiable risk factors for AD. As diabetes shares many pathological processes with AD, including accumulation of amyloid plaques and neurofibrillary tangles, insulin resistance, and impaired glucose metabolism, diabetes is thought to be a potentially modifiable risk factor for AD. Mounting evidence suggests that links between AD and diabetes may be more complex than previously believed. OBJECTIVE To examine the pleiotropic architecture of AD and diabetes mellitus (DM). METHODS Univariate and pleiotropic analyses were performed following the discovery-replication strategy using individual-level data from 10 large-scale studies. RESULTS We report a potentially novel pleiotropic NOTCH2 gene, with a minor allele of rs5025718 associated with increased risks of both AD and DM. We confirm previously identified antagonistic associations of the same variants with the risks of AD and DM in the HLA and APOE gene clusters. We show multiple antagonistic associations of the same variants with AD and DM in the HLA cluster, which were not explained by the lead SNP in this cluster. Although the ɛ2 and ɛ4 alleles played a major role in the antagonistic associations with AD and DM in the APOE cluster, we identified non-overlapping SNPs in this cluster, which were adversely and beneficially associated with AD and DM independently of the ɛ2 and ɛ4 alleles. CONCLUSION This study emphasizes differences and similarities in the heterogeneous genetic architectures of AD and DM, which may differentiate the pathogenic mechanisms of these diseases.
Collapse
Affiliation(s)
- Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Fan Feng
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Elena Loiko
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Alireza Nazarian
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Yury Loika
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| |
Collapse
|
6
|
Kulminski AM, Jain‐Washburn E, Philipp I, He L, Loika Y, Loiko E, Bagley O, Ukraintseva S, Yashin A, Arbeev K, Stallard E, Feitosa MF, Schupf N, Christensen K, Culminskaya I. APOE ɛ4 allele and TOMM40-APOC1 variants jointly contribute to survival to older ages. Aging Cell 2022; 21:e13730. [PMID: 36330582 PMCID: PMC9741507 DOI: 10.1111/acel.13730] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/23/2022] [Accepted: 03/10/2022] [Indexed: 11/06/2022] Open
Abstract
Age-related diseases characteristic of post-reproductive life, aging, and life span are the examples of polygenic non-Mendelian traits with intricate genetic architectures. Polygenicity of these traits implies that multiple variants can impact their risks independently or jointly as combinations of specific variants. Here, we examined chances to live to older ages, 85 years and older, for carriers of compound genotypes comprised of combinations of genotypes of rs429358 (APOE ɛ4 encoding polymorphism), rs2075650 (TOMM40), and rs12721046 (APOC1) polymorphisms using data from four human studies. The choice of these polymorphisms was motivated by our prior results showing that the ɛ4 carriers having minor alleles of the other two polymorphisms were at exceptionally high risk of Alzheimer's disease (AD), compared with non-carriers of the minor alleles. Consistent with our prior findings for AD, we show here that the adverse effect of the ɛ4 allele on survival to older ages is significantly higher in carriers of minor alleles of rs2075650 and/or rs12721046 polymorphisms compared with their non-carriers. The exclusion of AD cases made this effect stronger. Our results provide compelling evidence that AD does not mediate the associations of the same compound genotypes with chances to survive until older ages, indicating the existence of genetically heterogeneous mechanisms. The survival chances can be mainly associated with lipid- and immunity-related mechanisms, whereas the AD risk, can be driven by the AD-biomarker-related mechanism, among others. Targeting heterogeneous polygenic profiles of individuals at high risks of complex traits is promising for the translation of genetic discoveries to health care.
Collapse
Affiliation(s)
- Alexander M. Kulminski
- Biodemography of Aging Research Unit, Social Science Research InstituteDuke UniversityDurhamNorth CarolinaUSA
| | - Ethan Jain‐Washburn
- Biodemography of Aging Research Unit, Social Science Research InstituteDuke UniversityDurhamNorth CarolinaUSA
| | - Ian Philipp
- Biodemography of Aging Research Unit, Social Science Research InstituteDuke UniversityDurhamNorth CarolinaUSA
| | - Liang He
- Biodemography of Aging Research Unit, Social Science Research InstituteDuke UniversityDurhamNorth CarolinaUSA
| | - Yury Loika
- Biodemography of Aging Research Unit, Social Science Research InstituteDuke UniversityDurhamNorth CarolinaUSA
| | - Elena Loiko
- Biodemography of Aging Research Unit, Social Science Research InstituteDuke UniversityDurhamNorth CarolinaUSA
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Social Science Research InstituteDuke UniversityDurhamNorth CarolinaUSA
| | - Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research InstituteDuke UniversityDurhamNorth CarolinaUSA
| | - Anatoliy Yashin
- Biodemography of Aging Research Unit, Social Science Research InstituteDuke UniversityDurhamNorth CarolinaUSA
| | - Konstantin Arbeev
- Biodemography of Aging Research Unit, Social Science Research InstituteDuke UniversityDurhamNorth CarolinaUSA
| | - Eric Stallard
- Biodemography of Aging Research Unit, Social Science Research InstituteDuke UniversityDurhamNorth CarolinaUSA
| | - Mary F. Feitosa
- Division of Statistical Genomics, Department of GeneticsWashington University School of MedicineSt LouisMissouriUSA
| | - Nicole Schupf
- Gertrude H. Sergievsky CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Kaare Christensen
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public HealthSouthern Denmark UniversityOdenseDenmark
| | - Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research InstituteDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
7
|
Nazarian A, Loiko E, Yassine HN, Finch CE, Kulminski AM. APOE alleles modulate associations of plasma metabolites with variants from multiple genes on chromosome 19q13.3. Front Aging Neurosci 2022; 14:1023493. [PMID: 36389057 PMCID: PMC9650319 DOI: 10.3389/fnagi.2022.1023493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
The APOE ε2, ε3, and ε4 alleles differentially impact various complex diseases and traits. We examined whether these alleles modulated associations of 94 single-nucleotide polymorphisms (SNPs) harbored by 26 genes in 19q13.3 region with 217 plasma metabolites using Framingham Heart Study data. The analyses were performed in the E2 (ε2ε2 or ε2ε3 genotype), E3 (ε3ε3 genotype), and E4 (ε3ε4 or ε4ε4 genotype) groups separately. We identified 31, 17, and 22 polymorphism-metabolite associations in the E2, E3, and E4 groups, respectively, at a false discovery rate P FDR < 0.05. These entailed 51 and 19 associations with 20 lipid and 12 polar analytes. Contrasting the effect sizes between the analyzed groups showed 20 associations with group-specific effects at Bonferroni-adjusted P < 7.14E-04. Three associations with glutamic acid or dimethylglycine had significantly larger effects in the E2 than E3 group and 12 associations with triacylglycerol 56:5, lysophosphatidylethanolamines 16:0, 18:0, 20:4, or phosphatidylcholine 38:6 had significantly larger effects in the E2 than E4 group. Two associations with isocitrate or propionate and three associations with phosphatidylcholines 32:0, 32:1, or 34:0 had significantly larger effects in the E4 than E3 group. Nine of 70 SNP-metabolite associations identified in either E2, E3, or E4 groups attained P FDR < 0.05 in the pooled sample of these groups. However, none of them were among the 20 group-specific associations. Consistent with the evolutionary history of the APOE alleles, plasma metabolites showed higher APOE-cluster-related variations in the E4 than E2 and E3 groups. Pathway enrichment mainly highlighted lipids and amino acids metabolism and citrate cycle, which can be differentially impacted by the APOE alleles. These novel findings expand insights into the genetic heterogeneity of plasma metabolites and highlight the importance of the APOE-allele-stratified genetic analyses of the APOE-related diseases and traits.
Collapse
Affiliation(s)
- Alireza Nazarian
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Elena Loiko
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Hussein N. Yassine
- Departments of Medicine and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Caleb E. Finch
- Andrus Gerontology Center, University of Southern California, Los Angeles, CA, United States
| | - Alexander M. Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| |
Collapse
|
8
|
Belloy ME, Eger SJ, Le Guen Y, Damotte V, Ahmad S, Ikram MA, Ramirez A, Tsolaki AC, Rossi G, Jansen IE, de Rojas I, Parveen K, Sleegers K, Ingelsson M, Hiltunen M, Amin N, Andreassen O, Sánchez-Juan P, Kehoe P, Amouyel P, Sims R, Frikke-Schmidt R, van der Flier WM, Lambert JC, He Z, Han SS, Napolioni V, Greicius MD. Challenges at the APOE locus: a robust quality control approach for accurate APOE genotyping. Alzheimers Res Ther 2022; 14:22. [PMID: 35120553 PMCID: PMC8815198 DOI: 10.1186/s13195-022-00962-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/12/2022] [Indexed: 04/22/2023]
Abstract
BACKGROUND Genetic variants within the APOE locus may modulate Alzheimer's disease (AD) risk independently or in conjunction with APOE*2/3/4 genotypes. Identifying such variants and mechanisms would importantly advance our understanding of APOE pathophysiology and provide critical guidance for AD therapies aimed at APOE. The APOE locus however remains relatively poorly understood in AD, owing to multiple challenges that include its complex linkage structure and uncertainty in APOE*2/3/4 genotype quality. Here, we present a novel APOE*2/3/4 filtering approach and showcase its relevance on AD risk association analyses for the rs439401 variant, which is located 1801 base pairs downstream of APOE and has been associated with a potential regulatory effect on APOE. METHODS We used thirty-two AD-related cohorts, with genetic data from various high-density single-nucleotide polymorphism microarrays, whole-genome sequencing, and whole-exome sequencing. Study participants were filtered to be ages 60 and older, non-Hispanic, of European ancestry, and diagnosed as cognitively normal or AD (n = 65,701). Primary analyses investigated AD risk in APOE*4/4 carriers. Additional supporting analyses were performed in APOE*3/4 and 3/3 strata. Outcomes were compared under two different APOE*2/3/4 filtering approaches. RESULTS Using more conventional APOE*2/3/4 filtering criteria (approach 1), we showed that, when in-phase with APOE*4, rs439401 was variably associated with protective effects on AD case-control status. However, when applying a novel filter that increases the certainty of the APOE*2/3/4 genotypes by applying more stringent criteria for concordance between the provided APOE genotype and imputed APOE genotype (approach 2), we observed that all significant effects were lost. CONCLUSIONS We showed that careful consideration of APOE genotype and appropriate sample filtering were crucial to robustly interrogate the role of the APOE locus on AD risk. Our study presents a novel APOE filtering approach and provides important guidelines for research into the APOE locus, as well as for elucidating genetic interaction effects with APOE*2/3/4.
Collapse
Affiliation(s)
- Michael E Belloy
- Department of Neurology and Neurological Sciences - Greicius lab, Stanford University, 290 Jane Stanford Way, Stanford, CA, 94304, USA.
| | - Sarah J Eger
- Department of Neurology and Neurological Sciences - Greicius lab, Stanford University, 290 Jane Stanford Way, Stanford, CA, 94304, USA
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences - Greicius lab, Stanford University, 290 Jane Stanford Way, Stanford, CA, 94304, USA
| | - Vincent Damotte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Shahzad Ahmad
- Department of Epidemiology, ErasmusMC, Rotterdam, The Netherlands
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, ErasmusMC, Rotterdam, The Netherlands
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative diseases and Geriatric Psychiatry, Medical Faculty, University Hospital Bonn, Bonn, Germany
- Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Anthoula C Tsolaki
- 1st Department of Neurology, AHEPA Hospital, Aristotle University of Thessaloniki, Athens, Greece
| | - Giacomina Rossi
- Unit of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Iris E Jansen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije University, Amsterdam, The Netherlands
| | - Itziar de Rojas
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Kayenat Parveen
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative diseases and Geriatric Psychiatry, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Martin Ingelsson
- Department of Public Health and Carins Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Yliopistonranta 1E, 70211, Kuopio, Finland
| | - Najaf Amin
- Department of Epidemiology, ErasmusMC, Rotterdam, The Netherlands
- Nuffield Department of Population Health Oxford University, Oxford, UK
| | - Ole Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pascual Sánchez-Juan
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Patrick Kehoe
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Philippe Amouyel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Wales, UK
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jean-Charles Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Zihuai He
- Department of Neurology and Neurological Sciences - Greicius lab, Stanford University, 290 Jane Stanford Way, Stanford, CA, 94304, USA
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - Summer S Han
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA, 94304, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, 94304, USA
| | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences - Greicius lab, Stanford University, 290 Jane Stanford Way, Stanford, CA, 94304, USA
| |
Collapse
|