1
|
Omidi SJ, Lundstrom BN. Invasive Neurostimulation for the Treatment of Epilepsy. Semin Neurol 2025. [PMID: 40107299 DOI: 10.1055/a-2562-1964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Although electricity has been used in medicine for thousands of years, bioelectronic medicine for treating epilepsy has become increasingly common in recent years. Invasive neurostimulation centers primarily around three approaches: vagus nerve stimulation (VNS), responsive neurostimulation (RNS), and deep brain stimulation (DBS). These approaches differ by target (e.g., cranial nerve, cortex, or thalamus) and stimulation parameters (e.g., triggered stimulation or continuous stimulation). Although typically noncurative, these approaches can dramatically reduce the seizure burden and offer patients new treatment options. There remains much to be understood about optimal targets and individualized stimulation protocols. Objective markers of seizure burden and biomarkers that quickly quantify neural excitability are still needed. In the future, bioelectronic medicine could become a curative approach that remodels neural networks to reduce pathological activity.
Collapse
|
2
|
Jiao D, Xu L, Gu Z, Yan H, Shen D, Gu X. Pathogenesis, diagnosis, and treatment of epilepsy: electromagnetic stimulation-mediated neuromodulation therapy and new technologies. Neural Regen Res 2025; 20:917-935. [PMID: 38989927 PMCID: PMC11438347 DOI: 10.4103/nrr.nrr-d-23-01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 01/18/2024] [Indexed: 07/12/2024] Open
Abstract
Epilepsy is a severe, relapsing, and multifactorial neurological disorder. Studies regarding the accurate diagnosis, prognosis, and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy. The pathogenesis of epilepsy is complex and involves alterations in variables such as gene expression, protein expression, ion channel activity, energy metabolites, and gut microbiota composition. Satisfactory results are lacking for conventional treatments for epilepsy. Surgical resection of lesions, drug therapy, and non-drug interventions are mainly used in clinical practice to treat pain associated with epilepsy. Non-pharmacological treatments, such as a ketogenic diet, gene therapy for nerve regeneration, and neural regulation, are currently areas of research focus. This review provides a comprehensive overview of the pathogenesis, diagnostic methods, and treatments of epilepsy. It also elaborates on the theoretical basis, treatment modes, and effects of invasive nerve stimulation in neurotherapy, including percutaneous vagus nerve stimulation, deep brain electrical stimulation, repetitive nerve electrical stimulation, in addition to non-invasive transcranial magnetic stimulation and transcranial direct current stimulation. Numerous studies have shown that electromagnetic stimulation-mediated neuromodulation therapy can markedly improve neurological function and reduce the frequency of epileptic seizures. Additionally, many new technologies for the diagnosis and treatment of epilepsy are being explored. However, current research is mainly focused on analyzing patients' clinical manifestations and exploring relevant diagnostic and treatment methods to study the pathogenesis at a molecular level, which has led to a lack of consensus regarding the mechanisms related to the disease.
Collapse
Affiliation(s)
- Dian Jiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Lai Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hua Yan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dingding Shen
- Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Chua MMJ, Jha R, Campbell JM, Warren AEL, Rahimpour S, Rolston JD. A Posterior Approach for Combined Targeting of the Centromedian Nucleus and Pulvinar for Responsive Neurostimulation. Oper Neurosurg (Hagerstown) 2025:01787389-990000000-01504. [PMID: 40053878 DOI: 10.1227/ons.0000000000001535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/26/2024] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Neuromodulation for the treatment of epilepsy is a growing field, and several thalamic nuclei (including the anterior nucleus, centromedian nucleus [CM], and pulvinar) have been implicated and targeted. Although an anterior trajectory approach to the CM is conventionally used, we report on a novel posterior trajectory which can be useful when the conventional anterior approach is surgically challenging, or where dual CM and pulvinar coverage is desired. METHODS Clinical and imaging data were retrospectively collected from 7 patients with at least 1 posterior trajectory CM lead and 4 patients with at least 1 anterior trajectory CM lead. RESULTS Patients in the anterior and posterior trajectory groups had a mean of 48.1% and 65.2% seizure reduction, respectively, and were not significantly different (P = .53). Patients in the posterior trajectory group had contacts within the CM and/or pulvinar. There were no pulvinar contacts in the anterior trajectory group. Analysis of structural connectivity in 1 patient from each group revealed temporal- and occipital-projecting tracts for electrodes within the anterior and medial pulvinar nuclei. Stimulated thalamic nuclei from the anterior trajectory lead did not show any temporal- or occipital-projecting tracts. CONCLUSION We demonstrate that a posterior trajectory approach to the CM is feasible, safe, and effective in drug-resistant epilepsy. This provides an alternative option when the conventional anterior approach is surgically infeasible or when dual CM/pulvinar coverage is desired.
Collapse
Affiliation(s)
- Melissa M J Chua
- Department of Neurosurgery, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Rohan Jha
- Department of Neurosurgery, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Justin M Campbell
- Department of Neurosurgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Aaron E L Warren
- Department of Neurosurgery, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Shervin Rahimpour
- Department of Neurosurgery, University of Utah Health, Salt Lake City, Utah, USA
| | - John D Rolston
- Department of Neurosurgery, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Guo Y, Lin Z, Fan Z, Tian X. Epileptic brain network mechanisms and neuroimaging techniques for the brain network. Neural Regen Res 2024; 19:2637-2648. [PMID: 38595282 PMCID: PMC11168515 DOI: 10.4103/1673-5374.391307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 04/11/2024] Open
Abstract
Epilepsy can be defined as a dysfunction of the brain network, and each type of epilepsy involves different brain-network changes that are implicated differently in the control and propagation of interictal or ictal discharges. Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice. An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tractography, diffusion kurtosis imaging-based fiber tractography, fiber ball imaging-based tractography, electroencephalography, functional magnetic resonance imaging, magnetoencephalography, positron emission tomography, molecular imaging, and functional ultrasound imaging have been extensively used to delineate epileptic networks. In this review, we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy, and extensively analyze the imaging mechanisms, advantages, limitations, and clinical application ranges of each technique. A greater focus on emerging advanced technologies, new data analysis software, a combination of multiple techniques, and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.
Collapse
Affiliation(s)
- Yi Guo
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Zhonghua Lin
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Zhen Fan
- Department of Geriatrics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Xin Tian
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Tharp E, Hafeez MU, Gavvala J, Pati S, Lhatoo S, Tandon N, Mehanna R. Treatment of refractory post-hypoxic myoclonus and focal epilepsy with subthalamic nuclei deep brain stimulation. Parkinsonism Relat Disord 2024; 127:107056. [PMID: 39096548 DOI: 10.1016/j.parkreldis.2024.107056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 07/06/2024] [Indexed: 08/05/2024]
Affiliation(s)
- Emily Tharp
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Muhammad Ubaid Hafeez
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Jay Gavvala
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Sandipan Pati
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Samden Lhatoo
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Nitin Tandon
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Raja Mehanna
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Shan M, Mao H, Hu T, Xie H, Ye L, Cheng H. Deep brain stimulation of the subthalamic nucleus for a patient with drug resistant juvenile myoclonic epilepsy: 1 year follow-up. Neurol Sci 2024; 45:4997-5002. [PMID: 38740728 DOI: 10.1007/s10072-024-07553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Drug-resistant juvenile myoclonic epilepsy (DR-JME) remains a significant challenge in neurology. Traditional management strategies often fail to achieve satisfactory control, necessitating innovative treatments. OBJECTIVE This case report aims to evaluate the efficacy and safety of deep brain stimulation (DBS) targeting the subthalamic nucleus (STN-DBS) in a patient with DR-JME. METHODS We describe the treatment of a patient with DR-JME using STN-DBS. The patient underwent implantation and received high-frequency stimulation (HFS) at the STN. RESULTS One year post-implantation, the patient demonstrated a substantial reduction in motor seizure frequency by 87.5%, with improvements in quality of life and seizure severity by 52.0% and 46.7%, respectively. No adverse events were reported during the follow-up period. CONCLUSIONS This case represents the first report of favorable outcomes with STN-DBS in a patient with DR-JME, suggesting that long-term HFS of the STN may be a promising treatment option for patients suffering from this condition.
Collapse
Affiliation(s)
- Ming Shan
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China
| | - Hongliang Mao
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China
- First Clinical Medical College, Anhui Medical University, Meishan Road 81, Hefei, 230032, P.R. China
| | - Tianqi Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hutao Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Lei Ye
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China
| | - Hongwei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China.
| |
Collapse
|
7
|
Pati S, Agashe S, Kheder A, Riley K, Gavvala J, McGovern R, Suresh S, Chaitanya G, Thompson S. Stereoelectroencephalography of the Deep Brain: Basal Ganglia and Thalami. J Clin Neurophysiol 2024; 41:423-429. [PMID: 38935656 DOI: 10.1097/wnp.0000000000001097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
SUMMARY Stereoelectroencephalography (SEEG) has emerged as a transformative tool in epilepsy surgery, shedding light on the complex network dynamics involved in focal epilepsy. This review explores the role of SEEG in elucidating the role of deep brain structures, namely the basal ganglia and thalamus, in epilepsy. SEEG advances understanding of their contribution to seizure generation, propagation, and control by permitting precise and minimally invasive sampling of these brain regions. The basal ganglia, comprising the subthalamic nucleus, globus pallidus, substantia nigra, and striatum, have gained recognition for their involvement in both focal and generalized epilepsy. Electrophysiological recordings reveal hyperexcitability and increased synchrony within these structures, reinforcing their role as critical nodes within the epileptic network. Furthermore, low-frequency and high-frequency stimulation of the basal ganglia have demonstrated potential in modulating epileptogenic networks. Concurrently, the thalamus, a key relay center, has garnered prominence in epilepsy research. Disrupted thalamocortical connectivity in focal epilepsy underscores its significance in seizure maintenance. The thalamic subnuclei, including the anterior nucleus, centromedian, and medial pulvinar, present promising neuromodulatory targets, suggesting pathways for personalized epilepsy therapies. The prospect of multithalamic SEEG and thalamic SEEG stimulation trials has the potential to revolutionize epilepsy management, offering tailored solutions for challenging cases. SEEG's ability to unveil the dynamics of deep brain structures in epilepsy promises enhanced and personalized epilepsy care in our new era of precision medicine. Until deep brain SEEG is accepted as a standard of care, a rigorous informed consent process remains paramount for patients for whom such an exploration is proposed.
Collapse
Affiliation(s)
- Sandipan Pati
- Texas Comprehensive Epilepsy Program, Department of Neurology, The University of Texas Health Science Center at Houston, Texas, U.S.A
| | - Shruti Agashe
- Department of Neurology, Duke Comprehensive Epilepsy Center, Duke University, Durham, North Carolina, U.S.A
| | - Ammar Kheder
- Department of Neurology, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, U.S.A
| | - Kristen Riley
- Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham, Alabama, U.S.A
| | - Jay Gavvala
- Texas Comprehensive Epilepsy Program, Department of Neurology, The University of Texas Health Science Center at Houston, Texas, U.S.A
| | - Robert McGovern
- Department of Neurosurgery, University of Minnesota, Minnesota, U.S.A.; and
| | - Surya Suresh
- Texas Comprehensive Epilepsy Program, Department of Neurology, The University of Texas Health Science Center at Houston, Texas, U.S.A
| | - Ganne Chaitanya
- Texas Comprehensive Epilepsy Program, Department of Neurology, The University of Texas Health Science Center at Houston, Texas, U.S.A
| | - Stephen Thompson
- Neurology Division of the Department of Medicine, Hamilton Health Sciences and McMaster University, Canada
| |
Collapse
|
8
|
Mensah-Brown KG, Naylor RM, Graepel S, Brinjikji W. Neuromodulation: What the neurointerventionalist needs to know. Interv Neuroradiol 2024:15910199231224554. [PMID: 38454831 PMCID: PMC11569746 DOI: 10.1177/15910199231224554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 03/09/2024] Open
Abstract
Neuromodulation is the alteration of neural activity in the central, peripheral, or autonomic nervous systems. Consequently, this term lends itself to a variety of organ systems including but not limited to the cardiac, nervous, and even gastrointestinal systems. In this review, we provide a primer on neuromodulation, examining the various technological systems employed and neurological disorders targeted with this technology. Ultimately, we undergo a historical analysis of the field's development, pivotal discoveries and inventions gearing this review to neuro-adjacent subspecialties with a specific focus on neurointerventionalists.
Collapse
Affiliation(s)
| | - Ryan M. Naylor
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
9
|
Remore LG, Rifi Z, Nariai H, Eliashiv DS, Fallah A, Edmonds BD, Matsumoto JH, Salamon N, Tolossa M, Wei W, Locatelli M, Tsolaki EC, Bari AA. Structural connections of the centromedian nucleus of thalamus and their relevance for neuromodulation in generalized drug-resistant epilepsy: insight from a tractography study. Ther Adv Neurol Disord 2023; 16:17562864231202064. [PMID: 37822361 PMCID: PMC10563482 DOI: 10.1177/17562864231202064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023] Open
Abstract
Background Epilepsy is a widespread neurologic disorder and almost one-third of patients suffer from drug-resistant epilepsy (DRE). Neuromodulation targeting the centromediannucleus of the thalamus (CM) has been showing promising results for patients with generalized DRE who are not surgical candidates. Recently, the effect of CM- deep brain stimulation (DBS) in DRE patients was investigated in the Electrical Stimulation of Thalamus for Epilepsy of Lennox-Gastaut phenotype (ESTEL) trial, a monocentric randomized-controlled study. The same authors described a 'cold-spot' and a 'sweet-spot', which are defined as the volume of stimulation in the thalamus yielding the least and the best clinical response, respectively. However, it remains unclear which structural connections may contribute to the anti-seizure effect of the stimulation. Objective We investigated the differences in structural connectivity among CM, the sweet-spot and the cold-spot. Furthermore, we tried to validate our results in a cohort of DRE patients who underwent CM-DBS or CM-RNS (responsive neurostimulation). We hypothesized that the sweet-spot would share similar structural connectivity with responder patients. Methods By using the software FMRIB Software Library (FSL), probabilistic tractography was performed on 100 subjects from the Human Connectome Project to calculate the probability of connectivity of the whole CM, the sweet-spot and the cold-spot to 45 cortical and subcortical areas. Results among the three seeds were compared with multivariate analysis of variance (MANOVA). Similarly, the structural connectivity of volumes of tissue activated (VTAs) from eight DRE patients was investigated. Patients were divided into responders and non-responders based on the degree of reduction in seizure frequency, and the mean probabilities of connectivity were similarly compared between the two groups. Results The sweet-spot demonstrated a significantly higher probability of connectivity (p < 0.001) with the precentral gyrus, superior frontal gyrus, and the cerebellum than the whole CM and the cold-spot. Responder patients displayed a higher probability of connectivity with both ipsilateral (p = 0.011) and contralateral cerebellum (p = 0.04) than the non-responders. Conclusion Cerebellar connections seem to contribute to the beneficial effects of CM-neuromodulation in patients with drug-resistant generalized epilepsy.
Collapse
Affiliation(s)
- Luigi G. Remore
- Surgical Neuromodulation and Brain Mapping Laboratory, ULCA
- Department of Neurosurgery, 300 Stein Plaza, Los Angeles, CA 90095, USA
- University of Milan ‘La Statale’, Milan, Italy
- Department of Neurosurgery, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ziad Rifi
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Dawn S. Eliashiv
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Aria Fallah
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin D. Edmonds
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
| | - Joyce H. Matsumoto
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Meskerem Tolossa
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Wexin Wei
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Marco Locatelli
- University of Milan ‘La Statale’, Milan, Italy
- Department of Neurosurgery, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Evangelia C. Tsolaki
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Ausaf A. Bari
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
- Geffen School of Medicine David California Los Angeles University of Angeles Los CA, USA
| |
Collapse
|
10
|
Xu C, Qi L, Wang X, Schaper FLWVJ, Wu D, Yu T, Yan X, Jin G, Wang Q, Wang X, Huang X, Wang Y, Chen Y, Liu J, Wang Y, Horn A, Fisher RS, Ren L. Functional connectomic profile correlates with effective anterior thalamic stimulation for refractory epilepsy. Brain Stimul 2023; 16:1302-1309. [PMID: 37633491 DOI: 10.1016/j.brs.2023.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS) is an effective treatment for refractory epilepsy; however, seizure outcome varies among individuals. Identifying a reliable noninvasive biomarker to predict good responders would be helpful. OBJECTIVES To test whether the functional connectivity between the ANT-DBS sites and the seizure foci correlates with effective seizure control in refractory epilepsy. METHODS We performed a proof-of-concept pilot study of patients with focal refractory epilepsy receiving ANT-DBS. Using normative human connectome data derived from 1000 healthy participants, we investigated whether intrinsic functional connectivity between the seizure foci and the DBS site was associated with seizure outcome. We repeated this analysis controlling for the extent of seizure foci, distance between the seizure foci and DBS site, and using functional connectivity of the ANT instead of the DBS site to test the contribution of variance in DBS sites. RESULTS Eighteen patients with two or more seizure foci were included. Greater functional connectivity between the seizure foci and the DBS site correlated with more favorable outcome. The degree of functional connectivity accounted for significant variance in clinical outcomes (DBS site: |r| = 0.773, p < 0.001 vs ANT-atlas: |r| = 0.715, p = 0.001), which remained significant when controlling for the extent of the seizure foci (|r| = 0.773, p < 0.001) and the distance between the seizure foci and DBS site (|r| = 0.777, p < 0.001). Significant correlations were independent of variance in the DBS sites (|r| = 0.148, p = 0.57). CONCLUSION These findings suggest that functional connectomic profile is a potential reliable non-invasive biomarker to predict ANT-DBS outcomes. Accordingly, the identification of ANT responders could decrease the surgical risk for patients who may not benefit and optimize the cost-effective allocation of health care resources.
Collapse
Affiliation(s)
- Cuiping Xu
- National Center for Neurological Disorders, Beijing, China; Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Lei Qi
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Xueyuan Wang
- National Center for Neurological Disorders, Beijing, China; Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Frédéric L W V J Schaper
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Di Wu
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Tao Yu
- National Center for Neurological Disorders, Beijing, China; Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Xiaoming Yan
- National Center for Neurological Disorders, Beijing, China; Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Guangyuan Jin
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Qiao Wang
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Xiaopeng Wang
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Xinqi Huang
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Yuke Wang
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Yuanhong Chen
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Jinghui Liu
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Yuping Wang
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Andreas Horn
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States; Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology, Massachusetts General Hospital, Harvard Medical School, United States
| | - Robert S Fisher
- Department of Neurology and Neurological Sciences and Neurosurgery by Courtesy, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Liankun Ren
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
11
|
Wu D, Schaper FLWVJ, Jin G, Qi L, Du J, Wang X, Wang Y, Xu C, Wang X, Yu T, Fox MD, Ren L. Human anterior thalamic stimulation evoked cortical potentials align with intrinsic functional connectivity. Neuroimage 2023:120243. [PMID: 37353098 DOI: 10.1016/j.neuroimage.2023.120243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
Characterizing human thalamocortical network is fundamental for understanding a vast array of human behaviors since the thalamus plays a central role in cortico-subcortical communication. Over the past few decades, advances in functional magnetic resonance imaging have allowed for spatial mapping of intrinsic resting-state functional connectivity (RSFC) between both cortical regions and in cortico-subcortical networks. Despite these advances, identifying the electrophysiological basis of human thalamocortical network architecture remains challenging. By leveraging stereoelectroencephalography electrodes temporarily implanted into distributed cortical regions and the anterior nucleus of the thalamus (ANT) of 10 patients with refractory focal epilepsy, we tested whether ANT stimulation evoked cortical potentials align with RSFC from the stimulation site, derived from a normative functional connectome (n=1000). Our study identifies spatial convergence of ANT stimulation evoked cortical potentials and normative RSFC. Other than connections to the Papez circuit, the ANT was found to be closely connected to several distinct higher-order association cortices, including the precuneus, angular gyrus, dorsal lateral prefrontal cortex, and anterior insula. Remarkably, we found that the spatial distribution and magnitude of cortical-evoked responses to single-pulse electrical stimulation of the ANT aligned with the spatial pattern and strength of normative RSFC of the stimulation site. The present study provides electrophysiological evidence that stimulation evoked electrical activity flows along intrinsic brain networks connected on a thalamocortical level.
Collapse
Affiliation(s)
- Di Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Clinical Research Center of Epilepsy, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; National Center for Neurological Disorders, Beijing 100053, China
| | - Frederic L W V J Schaper
- Center of Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Guangyuan Jin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Clinical Research Center of Epilepsy, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; National Center for Neurological Disorders, Beijing 100053, China
| | - Lei Qi
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Clinical Research Center of Epilepsy, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; National Center for Neurological Disorders, Beijing 100053, China
| | - Jialin Du
- Department of Pharmacy Phase I Clinical Trial Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaopeng Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Clinical Research Center of Epilepsy, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; National Center for Neurological Disorders, Beijing 100053, China
| | - Yuke Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Cuiping Xu
- National Center for Neurological Disorders, Beijing 100053, China; Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xueyuan Wang
- National Center for Neurological Disorders, Beijing 100053, China; Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Tao Yu
- National Center for Neurological Disorders, Beijing 100053, China; Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Michael D Fox
- Center of Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States; Berenson-Allen Center for Non-invasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA 02115, United States; Martinos Center for Biomedical Imaging, Departments of Neurology and Radiology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02115, United States; Havard Medical School, Boston, MA 02115, USA
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Clinical Research Center of Epilepsy, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; National Center for Neurological Disorders, Beijing 100053, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
12
|
Yan H, Wang X, Zhang X, Qiao L, Gao R, Ni D, Shu W, Xu C, Ren L, Yu T. Deep brain stimulation for patients with refractory epilepsy: nuclei selection and surgical outcome. Front Neurol 2023; 14:1169105. [PMID: 37251216 PMCID: PMC10213517 DOI: 10.3389/fneur.2023.1169105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Objective By studying the surgical outcome of deep brain stimulation (DBS) of different target nuclei for patients with refractory epilepsy, we aimed to explore a clinically feasible target nucleus selection strategy. Methods We selected patients with refractory epilepsy who were not eligible for resective surgery. For each patient, we performed DBS on a thalamic nucleus [anterior nucleus of the thalamus (ANT), subthalamic nucleus (STN), centromedian nucleus (CMN), or pulvinar nucleus (PN)] selected based on the location of the patient's epileptogenic zone (EZ) and the possible epileptic network involved. We monitored the clinical outcomes for at least 12 months and analyzed the clinical characteristics and seizure frequency changes to assess the postoperative efficacy of DBS on the different target nuclei. Results Out of the 65 included patients, 46 (70.8%) responded to DBS. Among the 65 patients, 45 underwent ANT-DBS, 29 (64.4%) responded to the treatment, and four (8.9%) of them reported being seizure-free for at least 1 year. Among the patients with temporal lobe epilepsy (TLE, n = 36) and extratemporal lobe epilepsy (ETLE, n = 9), 22 (61.1%) and 7 (77.8%) responded to the treatment, respectively. Among the 45 patients who underwent ANT-DBS, 28 (62%) had focal to bilateral tonic-clonic seizures (FBTCS). Of these 28 patients, 18 (64%) responded to the treatment. Out of the 65 included patients, 16 had EZ related to the sensorimotor cortex and underwent STN-DBS. Among them, 13 (81.3%) responded to the treatment, and two (12.5%) were seizure-free for at least 6 months. Three patients had Lennox-Gastaut syndrome (LGS)-like epilepsy and underwent CMN-DBS; all of them responded to the treatment (seizure frequency reductions: 51.6%, 79.6%, and 79.5%). Finally, one patient with bilateral occipital lobe epilepsy underwent PN-DBS, reducing the seizure frequency by 69.7%. Significance ANT-DBS is effective for patients with TLE or ETLE. In addition, ANT-DBS is effective for patients with FBTCS. STN-DBS might be an optimal treatment for patients with motor seizures, especially when the EZ overlaps the sensorimotor cortex. CMN and PN may be considered modulating targets for patients with LGS-like epilepsy or occipital lobe epilepsy, respectively.
Collapse
Affiliation(s)
- Hao Yan
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xueyuan Wang
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaohua Zhang
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Qiao
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Runshi Gao
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Duanyu Ni
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Shu
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cuiping Xu
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liankun Ren
- Department of Neurology, Comprehensive Epilepsy Center of Beijing, Beijing Key Laboratory of Neuromodulation, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Yu
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Xue T, Wang S, Chen S, Wang H, Liu C, Shi L, Bai Y, Zhang C, Han C, Zhang J. Subthalamic nucleus stimulation attenuates motor seizures via modulating the nigral orexin pathway. Front Neurosci 2023; 17:1157060. [PMID: 37214393 PMCID: PMC10196042 DOI: 10.3389/fnins.2023.1157060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Focal motor seizures that originate in the motor region are a considerable challenge because of the high risk of permanent motor deficits after resection. Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a potential treatment for motor epilepsy that may enhance the antiepileptic actions of the substantia nigra pars reticulata (SNr). Orexin and its receptors have a relationship with both STN-DBS and epilepsy. We aimed to investigate whether and how STN inputs to the SNr regulate seizures and the role of the orexin pathway in this process. METHODS A penicillin-induced motor epileptic model in adult male C57BL/6 J mice was established to evaluate the efficacy of STN-DBS in modulating seizure activities. Optogenetic and chemogenetic approaches were employed to regulate STN-SNr circuits. Selective orexin receptor type 1 and 2 antagonists were used to inhibit the orexin pathway. RESULTS First, we found that high-frequency ipsilateral or bilateral STN-DBS was effective in reducing seizure activity in the penicillin-induced motor epilepsy model. Second, inhibition of STN excitatory neurons and STN-SNr projections alleviates seizure activities, whereas their activation amplifies seizure activities. In addition, activation of the STN-SNr circuits also reversed the protective effect of STN-DBS on motor epilepsy. Finally, we observed that STN-DBS reduced the elevated expression of orexin and its receptors in the SNr during seizures and that using a combination of selective orexin receptor antagonists also reduced seizure activity. CONCLUSION STN-DBS helps reduce motor seizure activity by inhibiting the STN-SNr circuit. Additionally, orexin receptor antagonists show potential in suppressing motor seizure activity and may be a promising therapeutic option in the future.
Collapse
Affiliation(s)
- Tao Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shujun Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huizhi Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chong Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunkui Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chunlei Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Lundstrom BN, Osman GM, Starnes K, Gregg NM, Simpson HD. Emerging approaches in neurostimulation for epilepsy. Curr Opin Neurol 2023; 36:69-76. [PMID: 36762660 PMCID: PMC9992108 DOI: 10.1097/wco.0000000000001138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
PURPOSE OF REVIEW Neurostimulation is a quickly growing treatment approach for epilepsy patients. We summarize recent approaches to provide a perspective on the future of neurostimulation. RECENT FINDINGS Invasive stimulation for treatment of focal epilepsy includes vagus nerve stimulation, responsive neurostimulation of the cortex and deep brain stimulation of the anterior nucleus of the thalamus. A wide range of other targets have been considered, including centromedian, central lateral and pulvinar thalamic nuclei; medial septum, nucleus accumbens, subthalamic nucleus, cerebellum, fornicodorsocommissure and piriform cortex. Stimulation for generalized onset seizures and mixed epilepsies as well as increased efforts focusing on paediatric populations have emerged. Hardware with more permanently implanted lead options and sensing capabilities is emerging. A wider variety of programming approaches than typically used may improve patient outcomes. Finally, noninvasive brain stimulation with its favourable risk profile offers the potential to treat increasingly diverse epilepsy patients. SUMMARY Neurostimulation for the treatment of epilepsy is surprisingly varied. Flexibility and reversibility of neurostimulation allows for rapid innovation. There remains a continued need for excitability biomarkers to guide treatment and innovation. Neurostimulation, a part of bioelectronic medicine, offers distinctive benefits as well as unique challenges.
Collapse
Affiliation(s)
| | | | - Keith Starnes
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Hugh D Simpson
- Department of Neurology, Alfred Health
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Gernert M, MacKeigan D, Deking L, Kaczmarek E, Feja M. Acute and chronic convection-enhanced muscimol delivery into the rat subthalamic nucleus induces antiseizure effects associated with high responder rates. Epilepsy Res 2023; 190:107097. [PMID: 36736200 DOI: 10.1016/j.eplepsyres.2023.107097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Intracerebral drug delivery is an emerging treatment strategy aiming to manage seizures in patients with systemic drug-resistant epilepsies. In rat seizure and epilepsy models, the GABAA receptor agonist muscimol has shown powerful antiseizure potential when injected acutely into the subthalamic nucleus (STN), known for its capacity to provide remote control of different seizure types. However, chronic intrasubthalamic muscimol delivery required for long-term seizure suppression has not yet been investigated. We tested the hypothesis that chronic convection-enhanced delivery (CED) of muscimol into the STN produces long-lasting antiseizure effects in the intravenous pentylenetetrazole seizure threshold test in female rats. Acute microinjection was included to verify efficacy of intrasubthalamic muscimol delivery in this seizure model and caused significant antiseizure effects at 30 and 60 ng per hemisphere with a dose-dependent increase of responders and efficacy and only mild adverse effects compared to controls. For the chronic study, muscimol was bilaterally infused into the STN over three weeks at daily doses of 60, 300, or 600 ng per hemisphere using an implantable pump and cannula system. Chronic intrasubthalamic CED of muscimol caused significant long-lasting antiseizure effects for up to three weeks at 300 and 600 ng daily. Drug responder rate increased dose-dependently, as did drug tolerance rates. Transient ataxia and body weight loss were the main adverse effects. Drug distribution was comparable (about 2-3 mm) between acute and chronic delivery. This is the first study providing proof-of-concept that not only acute, but also chronic, continuous CED of muscimol into the STN raises seizure thresholds.
Collapse
Affiliation(s)
- Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Bünteweg 2, D-30559 Hannover, Germany.
| | - Devlin MacKeigan
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Bünteweg 2, D-30559 Hannover, Germany
| | - Lillian Deking
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | - Edith Kaczmarek
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | - Malte Feja
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Bünteweg 2, D-30559 Hannover, Germany.
| |
Collapse
|
16
|
Wei PH, Nicolelis MA, Zhao GG. Rethinking the neurosurgical approach to brain disorders from the network neuroscience perspective. Sci Bull (Beijing) 2022; 67:2376-2380. [PMID: 36566053 DOI: 10.1016/j.scib.2022.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Peng-Hu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Lab of Walk Again Project (WAP), Translational Research Center for Brain-inspired Intelligence, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; National Center for Neurological Disorders, Beijing 100053, China
| | - Miguel A Nicolelis
- Department of Neurobiology, Duke University, Durham 27708, USA; International Institute for Neurosciences of Natal - Edmond and Lily Safra, Nata 59280-000, Brazil
| | - Guo-Guang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Lab of Walk Again Project (WAP), Translational Research Center for Brain-inspired Intelligence, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; National Center for Neurological Disorders, Beijing 100053, China; Beijing Municipal Geriatric Medical Research Center, Beijing 100053, China.
| |
Collapse
|
17
|
Krämer SD, Schuhmann MK, Volkmann J, Fluri F. Deep Brain Stimulation in the Subthalamic Nucleus Can Improve Skilled Forelimb Movements and Retune Dynamics of Striatal Networks in a Rat Stroke Model. Int J Mol Sci 2022; 23:15862. [PMID: 36555504 PMCID: PMC9779486 DOI: 10.3390/ijms232415862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/03/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Recovery of upper limb (UL) impairment after stroke is limited in stroke survivors. Since stroke can be considered as a network disorder, neuromodulation may be an approach to improve UL motor dysfunction. Here, we evaluated the effect of high-frequency stimulation (HFS) of the subthalamic nucleus (STN) in rats on forelimb grasping using the single-pellet reaching (SPR) test after stroke and determined costimulated brain regions during STN-HFS using 2-[18F]Fluoro-2-deoxyglucose-([18F]FDG)-positron emission tomography (PET). After a 4-week training of SPR, photothrombotic stroke was induced in the sensorimotor cortex of the dominant hemisphere. Thereafter, an electrode was implanted in the STN ipsilateral to the infarction, followed by a continuous STN-HFS or sham stimulation for 7 days. On postinterventional day 2 and 7, an SPR test was performed during STN-HFS. Success rate of grasping was compared between these two time points. [18F]FDG-PET was conducted on day 2 and 3 after stroke, without and with STN-HFS, respectively. STN-HFS resulted in a significant improvement of SPR compared to sham stimulation. During STN-HFS, a significantly higher [18F]FDG-uptake was observed in the corticosubthalamic/pallidosubthalamic circuit, particularly ipsilateral to the stimulated side. Additionally, STN-HFS led to an increased glucose metabolism within the brainstem. These data demonstrate that STN-HFS supports rehabilitation of skilled forelimb movements, probably by retuning dysfunctional motor centers within the cerebral network.
Collapse
Affiliation(s)
- Stefanie D. Krämer
- Radiopharmaceutical Sciences/Biopharmacy, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Michael K. Schuhmann
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany
| | - Felix Fluri
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany
| |
Collapse
|
18
|
Zhang H, Shen Z, Zhao Y, Du L, Deng Z. Dynamical Mechanism Analysis of Three Neuroregulatory Strategies on the Modulation of Seizures. Int J Mol Sci 2022; 23:13652. [PMID: 36362443 PMCID: PMC9657301 DOI: 10.3390/ijms232113652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 08/11/2023] Open
Abstract
This paper attempts to explore and compare the regulatory mechanisms of optogenetic stimulation (OS), deep brain stimulation (DBS) and electromagnetic induction on epilepsy. Based on the Wilson-Cowan model, we first demonstrate that the external input received by excitatory and inhibitory neural populations can induce rich dynamic bifurcation behaviors such as Hopf bifurcation, and make the system exhibit epileptic and normal states. Then, both OS and DBS are shown to be effective in controlling the epileptic state to a normal low-level state, and the stimulus parameters have a broad effective range. However, electromagnetic induction cannot directly control epilepsy to this desired state, even if it can significantly reduce the oscillation frequency of neural populations. One main difference worth noting is that the high spatiotemporal specificity of OS allows it to target inhibitory neuronal populations, whereas DBS and electromagnetic induction can only stimulate excitatory as well as inhibitory neuronal populations together. Next, the propagation behavior of epilepsy is explored under a typical three-node feedback loop structure. An increase in coupling strength accelerates and exacerbates epileptic activity in other brain regions. Finally, OS and DBS applied to the epileptic focus play similar positive roles in controlling the behavior of the area of seizure propagation, while electromagnetic induction still only achieves unsatisfactory effects. It is hoped that these dynamical results can provide insights into the treatment of epilepsy as well as other neurological disorders.
Collapse
Affiliation(s)
- Honghui Zhang
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an 710072, China
- MIIT Key Laboratory of Dynamics and Control of Complex Systems, Xi’an 710072, China
| | - Zhuan Shen
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an 710072, China
- MIIT Key Laboratory of Dynamics and Control of Complex Systems, Xi’an 710072, China
| | - Yuzhi Zhao
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an 710072, China
- MIIT Key Laboratory of Dynamics and Control of Complex Systems, Xi’an 710072, China
| | - Lin Du
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an 710072, China
- MIIT Key Laboratory of Dynamics and Control of Complex Systems, Xi’an 710072, China
| | - Zichen Deng
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an 710072, China
- MIIT Key Laboratory of Dynamics and Control of Complex Systems, Xi’an 710072, China
- School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
19
|
Qi L, Xu C, Wang X, Du J, He Q, Wu D, Wang X, Jin G, Wang Q, Chen J, Wang D, Zhang H, Zhang X, Wei P, Shan Y, Cui Z, Wang Y, Shu Y, Zhao G, Yu T, Ren L. Intracranial direct electrical mapping reveals the functional architecture of the human basal ganglia. Commun Biol 2022; 5:1123. [PMID: 36274105 PMCID: PMC9588773 DOI: 10.1038/s42003-022-04084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022] Open
Abstract
The basal ganglia play a key role in integrating a variety of human behaviors through the cortico–basal ganglia–thalamo–cortical loops. Accordingly, basal ganglia disturbances are implicated in a broad range of debilitating neuropsychiatric disorders. Despite accumulating knowledge of the basal ganglia functional organization, the neural substrates and circuitry subserving functions have not been directly mapped in humans. By direct electrical stimulation of distinct basal ganglia regions in 35 refractory epilepsy patients undergoing stereoelectroencephalography recordings, we here offer currently the most complete overview of basal ganglia functional characterization, extending not only to the expected sensorimotor responses, but also to vestibular sensations, autonomic responses, cognitive and multimodal effects. Specifically, some locations identified responses weren’t predicted by the model derived from large-scale meta-analyses. Our work may mark an important step toward understanding the functional architecture of the human basal ganglia and provide mechanistic explanations of non-motor symptoms in brain circuit disorders. Direct electrical stimulation of the basal ganglia using implanted SEEG electrodes produced a variety of motor and non-motor effects in human participants, providing insight into the functional architecture of this key brain region.
Collapse
|
20
|
Piper RJ, Richardson RM, Worrell G, Carmichael DW, Baldeweg T, Litt B, Denison T, Tisdall MM. Towards network-guided neuromodulation for epilepsy. Brain 2022; 145:3347-3362. [PMID: 35771657 PMCID: PMC9586548 DOI: 10.1093/brain/awac234] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
Epilepsy is well-recognized as a disorder of brain networks. There is a growing body of research to identify critical nodes within dynamic epileptic networks with the aim to target therapies that halt the onset and propagation of seizures. In parallel, intracranial neuromodulation, including deep brain stimulation and responsive neurostimulation, are well-established and expanding as therapies to reduce seizures in adults with focal-onset epilepsy; and there is emerging evidence for their efficacy in children and generalized-onset seizure disorders. The convergence of these advancing fields is driving an era of 'network-guided neuromodulation' for epilepsy. In this review, we distil the current literature on network mechanisms underlying neurostimulation for epilepsy. We discuss the modulation of key 'propagation points' in the epileptogenic network, focusing primarily on thalamic nuclei targeted in current clinical practice. These include (i) the anterior nucleus of thalamus, now a clinically approved and targeted site for open loop stimulation, and increasingly targeted for responsive neurostimulation; and (ii) the centromedian nucleus of the thalamus, a target for both deep brain stimulation and responsive neurostimulation in generalized-onset epilepsies. We discuss briefly the networks associated with other emerging neuromodulation targets, such as the pulvinar of the thalamus, piriform cortex, septal area, subthalamic nucleus, cerebellum and others. We report synergistic findings garnered from multiple modalities of investigation that have revealed structural and functional networks associated with these propagation points - including scalp and invasive EEG, and diffusion and functional MRI. We also report on intracranial recordings from implanted devices which provide us data on the dynamic networks we are aiming to modulate. Finally, we review the continuing evolution of network-guided neuromodulation for epilepsy to accelerate progress towards two translational goals: (i) to use pre-surgical network analyses to determine patient candidacy for neurostimulation for epilepsy by providing network biomarkers that predict efficacy; and (ii) to deliver precise, personalized and effective antiepileptic stimulation to prevent and arrest seizure propagation through mapping and modulation of each patients' individual epileptogenic networks.
Collapse
Affiliation(s)
- Rory J Piper
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | | | | | - Torsten Baldeweg
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Brian Litt
- Department of Neurology and Bioengineering, University of Pennsylvania, Philadelphia, USA
| | | | - Martin M Tisdall
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
21
|
Yan H, Ren L, Yu T. Deep brain stimulation of the subthalamic nucleus for epilepsy. Acta Neurol Scand 2022; 146:798-804. [PMID: 36134756 DOI: 10.1111/ane.13707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/04/2022] [Indexed: 12/16/2022]
Abstract
Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a promising palliative option for patients with refractory epilepsy. However, crucial questions remain unanswered: Which patients are the optimal candidates? How, where, and when to stimulate the STN? And what is the mechanism of STN-DBS action on epilepsy? Thus, we reviewed the clinical evidence on the antiepileptic effects of STN-DBS and its possible mechanisms on drug-resistant epilepsy, its safety, and the factors influencing stimulation outcomes. This information may guide clinical decision-making. In addition, based on the current knowledge on the effect of STN-DBS on epilepsy, we suggest research that needs to be carried out in the future.
Collapse
Affiliation(s)
- Hao Yan
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liankun Ren
- Department of Neurology, Comprehensive Epilepsy Center of Beijing, Beijing Key Laboratory of Neuromodulation, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Yu
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Xue T, Chen S, Bai Y, Han C, Yang A, Zhang J. Neuromodulation in drug-resistant epilepsy: A review of current knowledge. Acta Neurol Scand 2022; 146:786-797. [PMID: 36063433 DOI: 10.1111/ane.13696] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022]
Abstract
Nearly 1% of the global population suffers from epilepsy. Drug-resistant epilepsy (DRE) affects one-third of epileptic patients who are unable to treat their condition with existing drugs. For the treatment of DRE, neuromodulation offers a lot of potential. The background, mechanism, indication, application, efficacy, and safety of each technique are briefly described in this narrative review, with an emphasis on three approved neuromodulation therapies: vagus nerve stimulation (VNS), deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS), and closed-loop responsive neurostimulation (RNS). Neuromodulatory approaches involving direct or induced electrical currents have been developed to lessen seizure frequency and duration in patients with DRE since the notion of electrical stimulation as a therapy for neurologic diseases originated in the early nineteenth century. Although few people have attained total seizure independence for more than 12 months using these treatments, more than half have benefitted from a 50% drop in seizure frequency over time. Although promising outcomes in adults and children with DRE have been achieved, challenges such as heterogeneity among epilepsy types and etiologies, optimization of stimulation parameters, a lack of biomarkers to predict response to neuromodulation therapies, high-level evidence to aid decision-making, and direct comparisons between neuromodulatory approaches remain. To solve these existing gaps, authorize new kinds of neuromodulation, and develop personalized closed-loop treatments, further research is needed. Finally, both invasive and non-invasive neuromodulation seems to be safe. Implantation-related adverse events for invasive stimulation primarily include infection and pain at the implant site. Intracranial hemorrhage is a frequent adverse event for DBS and RNS. Other stimulation-specific side-effects are mild with non-invasive stimulation.
Collapse
Affiliation(s)
- Tao Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shujun Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunlei Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Liang JH, Alevy J, Akhanov V, Seo R, Massey CA, Jiang D, Zhou J, Sillitoe RV, Noebels JL, Samuel MA. Kctd7 deficiency induces myoclonic seizures associated with Purkinje cell death and microvascular defects. Dis Model Mech 2022; 15:dmm049642. [PMID: 35972048 PMCID: PMC9509889 DOI: 10.1242/dmm.049642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
Mutations in the potassium channel tetramerization domain-containing 7 (KCTD7) gene are associated with a severe neurodegenerative phenotype characterized by childhood onset of progressive and intractable myoclonic seizures accompanied by developmental regression. KCTD7-driven disease is part of a large family of progressive myoclonic epilepsy syndromes displaying a broad spectrum of clinical severity. Animal models of KCTD7-related disease are lacking, and little is known regarding how KCTD7 protein defects lead to epilepsy and cognitive dysfunction. We characterized Kctd7 expression patterns in the mouse brain during development and show that it is selectively enriched in specific regions as the brain matures. We further demonstrate that Kctd7-deficient mice develop seizures and locomotor defects with features similar to those observed in human KCTD7-associated diseases. We also show that Kctd7 is required for Purkinje cell survival in the cerebellum and that selective degeneration of these neurons is accompanied by defects in cerebellar microvascular organization and patterning. Taken together, these results define a new model for KCTD7-associated epilepsy and identify Kctd7 as a modulator of neuron survival and excitability linked to microvascular alterations in vulnerable regions.
Collapse
Affiliation(s)
- Justine H. Liang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan Alevy
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Viktor Akhanov
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan Seo
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cory A. Massey
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Danye Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joy Zhou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX 77030, USA
| | - Roy V. Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX 77030, USA
| | - Jeffrey L. Noebels
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Melanie A. Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
24
|
Lee LHN, Huang CS, Wang RW, Lai HJ, Chung CC, Yang YC, Kuo CC. Deep brain stimulation rectifies the noisy cortex and irresponsive subthalamus to improve parkinsonian locomotor activities. NPJ Parkinsons Dis 2022; 8:77. [PMID: 35725730 PMCID: PMC9209473 DOI: 10.1038/s41531-022-00343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
The success of deep brain stimulation (DBS) therapy indicates that Parkinson's disease is a brain rhythm disorder. However, the manifestations of the erroneous rhythms corrected by DBS remain to be established. We found that augmentation of α rhythms and α coherence between the motor cortex (MC) and the subthalamic nucleus (STN) is characteristically prokinetic and is decreased in parkinsonian rats. In multi-unit recordings, movement is normally associated with increased changes in spatiotemporal activities rather than overall spike rates in MC. In parkinsonian rats, MC shows higher spike rates at rest but less spatiotemporal activity changes upon movement, and STN burst discharges are more prevalent, longer lasting, and less responsive to MC inputs. DBS at STN rectifies the foregoing pathological MC-STN oscillations and consequently locomotor deficits, yet overstimulation may cause behavioral restlessness. These results indicate that delicate electrophysiological considerations at both cortical and subcortical levels should be exercised for optimal DBS therapy.
Collapse
Affiliation(s)
- Lan-Hsin Nancy Lee
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Neurology, Fu Jen Catholic University Hospital, New Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chen-Syuan Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ren-Wei Wang
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsing-Jung Lai
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,National Taiwan University Hospital, Jin-Shan Branch, New Taipei, Taiwan
| | - Chih-Ching Chung
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Chin Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan. .,Department of Psychiatry, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.
| | - Chung-Chin Kuo
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan. .,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
25
|
Du J, Zhu Y, Zhao C, Yang D, Yu T, Zhang X, Ren L, Wang Y. Distinct Patterns of Automatic and Controlled Incongruent Information Processing in the Human Brain. Front Hum Neurosci 2022; 16:836374. [PMID: 35601902 PMCID: PMC9121373 DOI: 10.3389/fnhum.2022.836374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
It is a fundamental ability to discriminate incongruent information in daily activity. However, the underlying neural dynamics are still unclear. Using stereoelectroencephalography (SEEG), in this study, we investigated the fine-grained and different states of incongruent information processing in patients with refractory epilepsy who underwent intracranial electrode implantation. All patients performed a delayed match-to-sample paradigm in the sequential pairs of visual stimuli (S1 followed by S2). Participants were asked to discriminate whether the relevant feature of S2 was identical to S1 while ignoring the irrelevant feature. The spatiotemporal cortical responses evoked by different conditions were calculated and compared, respectively, in the context of brain intrinsic functional networks. In total, we obtained SEEG recordings from 241 contacts in gray matter. In the processing of irrelevant incongruent information, the activated brain areas included the superior parietal lobule, supramarginal gyrus, angular gyrus, inferior temporal gyrus, and fusiform gyrus. By comparing the relevant incongruent condition with the congruent condition, the activated brain areas included the middle frontal gyrus, superior temporal gyrus, middle temporal gyrus, posterior superior temporal sulcus, and posterior cingulate cortex. We demonstrated the dynamics of incongruent information processing with high spatiotemporal resolution and suggested that the process of automatic detection of irrelevant incongruent information requires the involvement of local regions and relatively few networks. Meanwhile, controlled discrimination of relevant incongruent information requires the participation of extensive regions and a wide range of nodes in the network. Furthermore, both the frontoparietal control network and default mode network were engaged in the incongruent information processing.
Collapse
Affiliation(s)
- Jialin Du
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu Zhu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chengtian Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dongju Yang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Yu
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaohua Zhang
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Liankun Ren
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Institute of Sleep and Consciousness Disorders, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
- *Correspondence: Yuping Wang
| |
Collapse
|
26
|
Lesser RP, Webber W, Miglioretti DL. Pan-cortical coordination underlying mental effort. Clin Neurophysiol 2022; 136:130-137. [DOI: 10.1016/j.clinph.2021.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/11/2021] [Accepted: 12/19/2021] [Indexed: 11/03/2022]
|
27
|
Merola A, Singh J, Reeves K, Changizi B, Goetz S, Rossi L, Pallavaram S, Carcieri S, Harel N, Shaikhouni A, Sammartino F, Krishna V, Verhagen L, Dalm B. New Frontiers for Deep Brain Stimulation: Directionality, Sensing Technologies, Remote Programming, Robotic Stereotactic Assistance, Asleep Procedures, and Connectomics. Front Neurol 2021; 12:694747. [PMID: 34367055 PMCID: PMC8340024 DOI: 10.3389/fneur.2021.694747] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 11/21/2022] Open
Abstract
Over the last few years, while expanding its clinical indications from movement disorders to epilepsy and psychiatry, the field of deep brain stimulation (DBS) has seen significant innovations. Hardware developments have introduced directional leads to stimulate specific brain targets and sensing electrodes to determine optimal settings via feedback from local field potentials. In addition, variable-frequency stimulation and asynchronous high-frequency pulse trains have introduced new programming paradigms to efficiently desynchronize pathological neural circuitry and regulate dysfunctional brain networks not responsive to conventional settings. Overall, these innovations have provided clinicians with more anatomically accurate programming and closed-looped feedback to identify optimal strategies for neuromodulation. Simultaneously, software developments have simplified programming algorithms, introduced platforms for DBS remote management via telemedicine, and tools for estimating the volume of tissue activated within and outside the DBS targets. Finally, the surgical accuracy has improved thanks to intraoperative magnetic resonance or computerized tomography guidance, network-based imaging for DBS planning and targeting, and robotic-assisted surgery for ultra-accurate, millimetric lead placement. These technological and imaging advances have collectively optimized DBS outcomes and allowed “asleep” DBS procedures. Still, the short- and long-term outcomes of different implantable devices, surgical techniques, and asleep vs. awake procedures remain to be clarified. This expert review summarizes and critically discusses these recent innovations and their potential impact on the DBS field.
Collapse
Affiliation(s)
- Aristide Merola
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jaysingh Singh
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Kevin Reeves
- Department of Psychiatry, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Barbara Changizi
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Steven Goetz
- Medtronic PLC Neuromodulation, Minneapolis, MN, United States
| | | | | | | | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Ammar Shaikhouni
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Francesco Sammartino
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Vibhor Krishna
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Leo Verhagen
- Movement Disorder Section, Department of Neurological Sciences, Rush University, Chicago, IL, United States
| | - Brian Dalm
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
28
|
Abstract
[Box: see text]
Collapse
|
29
|
Aupy J, Ribot B, Dovero S, Biendon N, Nguyen TH, Porras G, Deffains M, Guehl D, Burbaud P. Acute Striato-Cortical Synchronization Induces Focal Motor Seizures in Primates. Cereb Cortex 2020; 30:6469-6480. [PMID: 32776091 DOI: 10.1093/cercor/bhaa212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Whether the basal ganglia are involved in the cortical synchronization during focal seizures is still an open question. In the present study, we proposed to synchronize cortico-striatal activities acutely inducing striatal disinhibition, performing GABA-antagonist injections within the putamen in primates. METHOD Experiments were performed on three fascicularis monkeys. During each experimental session, low volumes of bicuculline (0.5-4 μL) were injected at a slow rate of 1 μL/min. Spontaneous behavioral changes were classified according to Racine's scale modified for primates. These induced motor behaviors were correlated with electromyographic, electroencephalographic, and putaminal and pallidal local field potentials changes in activity. RESULTS acute striatal desinhibition induced focal motor seizures. Seizures were closely linked to cortical epileptic activity synchronized with a striatal paroxysmal activity. These changes in striatal activity preceded the cortical epileptic activity and the induced myoclonia, and both cortical and subcortical activities were coherently synchronized during generalized seizures. INTERPRETATION Our results strongly suggest the role of the sensorimotor striatum in the regulation and synchronization of cortical excitability. These dramatic changes in the activity of this "gating" pathway might influence seizure susceptibility by modulating the threshold for the initiation of focal motor seizures.
Collapse
Affiliation(s)
- Jerome Aupy
- University of Bordeaux, Bordeaux Neurocampus, IMN, UMR CNRS 5293, 33076 Bordeaux, France.,Department of Clinical Neurosciences, Bordeaux University Hospital, 33076 Bordeaux, France
| | - Bastien Ribot
- University of Bordeaux, Bordeaux Neurocampus, IMN, UMR CNRS 5293, 33076 Bordeaux, France
| | - Sandra Dovero
- University of Bordeaux, Bordeaux Neurocampus, IMN, UMR CNRS 5293, 33076 Bordeaux, France
| | - Nathalie Biendon
- University of Bordeaux, Bordeaux Neurocampus, IMN, UMR CNRS 5293, 33076 Bordeaux, France
| | - Tho-Hai Nguyen
- University of Bordeaux, Bordeaux Neurocampus, IMN, UMR CNRS 5293, 33076 Bordeaux, France
| | - Gregory Porras
- University of Bordeaux, Bordeaux Neurocampus, IMN, UMR CNRS 5293, 33076 Bordeaux, France
| | - Marc Deffains
- University of Bordeaux, Bordeaux Neurocampus, IMN, UMR CNRS 5293, 33076 Bordeaux, France
| | - Dominique Guehl
- University of Bordeaux, Bordeaux Neurocampus, IMN, UMR CNRS 5293, 33076 Bordeaux, France.,Department of Clinical Neurosciences, Bordeaux University Hospital, 33076 Bordeaux, France
| | - Pierre Burbaud
- University of Bordeaux, Bordeaux Neurocampus, IMN, UMR CNRS 5293, 33076 Bordeaux, France.,Department of Clinical Neurosciences, Bordeaux University Hospital, 33076 Bordeaux, France
| |
Collapse
|