1
|
Baron JC. Is Reperfusion Injury a Largely Intra-Ischemic Injury? Stroke 2025; 56:777-782. [PMID: 39772553 DOI: 10.1161/strokeaha.124.049541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Reperfusion injury (RI) refers to an array of detrimental cellular and biochemical processes that are widely believed to be triggered by reperfusion following focal cerebral ischemia and to contribute to infarct extension and poor outcome despite complete recanalization. Accordingly, it is widely recommended that therapies targeting RI be administered after recanalization. The present topical review demonstrates, however, that the vast majority of, and possibly all, processes considered part of RI are not actually provoked by reperfusion but develop during the ischemic phase. This notion has significant implications for clinical trials. Thus, for optimal efficacy, treatments targeting RI should accordingly be started before recanalization. Conversely, interventions aimed at protecting the ischemic penumbra, either pharmacological or nonpharmacological, during arterial occlusion are likely to also benefit RI-related processes and should probably be continued after recanalization. Overall, that RI is largely an intra-ischemic process has important ramifications for drug development as well as clinical trials, and more broadly for the management of hyperacute ischemic stroke patients prior to, and following, recanalization.
Collapse
Affiliation(s)
- Jean-Claude Baron
- Department of Neurology, Institut de Psychiatrie et Neurosciences de Paris, INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Université Paris Cité, France
| |
Collapse
|
2
|
Zhang L, Yu X, Liao W, Wang J, Lu Y, Wang N, Huanxia Z. Effects of body weight-supported Tai Chi Yunshou training on upper limb motor function in stroke patients: A three-arm parallel randomized controlled trial. PLoS One 2025; 20:e0314025. [PMID: 39787119 PMCID: PMC11717223 DOI: 10.1371/journal.pone.0314025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/24/2024] [Indexed: 01/12/2025] Open
Abstract
OBJECTIVES To form a unique body weight support-Tai Chi Yunshou (BWS-TCY) training method, apply it to the treatment of upper limb dysfunction after stroke, and provide a new safe and effective treatment method for the clinic. METHODS A total of 93 subjects were recruited and randomly divided into conventional rehabilitation treatment (CRT) group, BWS-TCY group and traditional robot-assisted training (RAT) group in equal proportions. Subjects in the CRT group received 60 minutes of CRT daily. Subjects in the BWS-TCY group received 30 minutes of CRT and 30 minutes of BWS-TCY. Subjects in the RAT group received 30 minutes of CRT and 30 minutes of RAT. All interventions were conducted 5 days per week for 12 weeks. Outcome assessments included the Fugl-Meyer Upper Extremity Motor Function Assessment (FMA-UE), Wolf Motor Function Test (WMFT), absolute angular error (AAE), joint range of motion (JMA), modified Barthel Index (MBI), and stroke-related quality of life. Table (SS-QOL). Outcome measures were assessed at baseline, 4 weeks, 8 weeks, and 12 weeks later, and statistical analyzes were performed using two-way repeated measures analysis of variance. RESULTS After 12 weeks of intervention, significant improvements were observed in all evaluation indicators for the three groups of subjects compared to before the intervention. The upper limb motor function (FMA-UE and WMFT) and proprioception (AAE) showed time effects, time × group interaction effects, and group effects. When comparing the groups, the FMA-UE in the BWS-TCY group, as well as the WMFT and MBI, showed statistically significant differences compared to the CRT group (P<0.05), but not statistically significant compared to the RAT group (P>0.05). The AAE of the BWS-TCY group showed no statistical difference (P>0.05) when compared to the CRT group and RAT group. Furthermore, a time effect was observed on the rotation direction (P<0.05), and pairwise comparison between groups revealed that the BWS-TCY group performed better than both the CRT group and the RAT group. After 12 weeks of intervention, there were time effects and interaction effects between BWS-TCY and daily living activities (MBI) and quality of life (SS-QOL), but no group effect was observed. There was no statistical difference between the two groups in SS-QOL. However, there was a statistical difference (P<0.01) in MBI between the two groups. CONCLUSIONS The 12-week BWS-TCY intervention has been shown to effectively improve upper limb motor function. TRIAL REGISTRATION Retrospectively registered at chictr.org.cn on August 31, 2022 [ChiCTR2200063150] https://www.chictr.org.cn/showproj.html?proj=176229.
Collapse
Affiliation(s)
- Liying Zhang
- Department of Rehabilitation, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Neurology, Fujian Provincial Governmental Hospital, Fujian, China
| | - Xiaoming Yu
- Department of Rehabilitation, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wangsheng Liao
- Department of Rehabilitation, Fuzhou Second Hospital, Fujian, China
| | - Jiening Wang
- Department of Rehabilitation, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Lu
- Department of Rehabilitation, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Naizhen Wang
- Department of Rehabilitation, Fuzhou Second Hospital, Fujian, China
- Fujian Medical University School of Health, Fujian, China
| | - Zhou Huanxia
- Department of Rehabilitation, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Real MGC, Falcione SR, Boghozian R, Clarke M, Todoran R, St Pierre A, Zhang Y, Joy T, Jickling GC. Endothelial Cell Senescence Effect on the Blood-Brain Barrier in Stroke and Cognitive Impairment. Neurology 2024; 103:e210063. [PMID: 39541552 DOI: 10.1212/wnl.0000000000210063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024] Open
Abstract
Age is an important risk factor of stroke, cognitive decline, and dementia. Senescent endothelial cells (ECs) accumulate with advancing age through exposure to cellular stress, such as that exerted by hypertension and diabetes. These senescent ECs have altered characteristics, such as altered tight junction proteins, use of a more indiscriminate transcellular transport system, increased inflammation, and increased immune cell interactions. ECs are the main component of the blood-brain barrier (BBB), separating the brain from systemic circulation. As senescent ECs accumulate in the BBB, their altered functioning results in the disruption of the barrier. They have inadequate barrier-forming properties, disrupted extracellular matrix, and increased transcytosis, resulting in an overly permeable barrier. This disruption of the BBB can have important effects in stroke and cognitive impairment, as presented in this review. Besides increasing the permeability of the BBB, senescent ECs can also impair angiogenesis and vascular remodeling, which in ischemic stroke may increase risk of hemorrhagic transformation and worsen outcomes. Senescent ECs may also contribute to microvascular dysfunction, with disruption of cerebral perfusion and autoregulation. These may contribute to vascular cognitive impairment along with increased permeability. With an aging population, there is growing interest in targeting senescence. Several ongoing trials have been evaluating whether senolytics can slow aging, improve vascular health, and reduce the risk of stroke and cognitive decline.
Collapse
Affiliation(s)
- Maria Guadalupe C Real
- From the Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Sarina R Falcione
- From the Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Roobina Boghozian
- From the Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Michael Clarke
- From the Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Raluca Todoran
- From the Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Alexis St Pierre
- From the Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Yiran Zhang
- From the Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Twinkle Joy
- From the Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Glen C Jickling
- From the Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
4
|
Lin L, Wang Y, Chen C, Bivard A, Butcher K, Garcia-Esperon C, Spratt NJ, Levi CR, Cheng X, Dong Q, Parsons MW. Exploring ischemic core growth rate and endovascular therapy benefit in large core patients. J Cereb Blood Flow Metab 2024; 44:1593-1604. [PMID: 39054948 PMCID: PMC11572017 DOI: 10.1177/0271678x241242911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 07/27/2024]
Abstract
After stroke onset, ischemic brain tissue will progress to infarction unless blood flow is restored. Core growth rate measures the infarction speed from stroke onset. This multicenter cohort study aimed to explore whether core growth rate influences benefit from the reperfusion treatment of endovascular thrombectomy in large ischemic core stroke patients. It identified 134 patients with large core volume >70 mL assessed on brain perfusion image within 9 hours of stroke onset. Of 134 patients, 71 received endovascular thrombectomy and 63 did not receive the treatment. Overall, poor outcomes were frequent, with 3-month severed disability or death rate at 56% in treatment group and 68% in no treatment group (p = 0.156). Patients were then stratified by core growth rate. For patients with 'ultrafast core growth' of >70 mL/hour, rates of poor outcome were especially high in patients without endovascular thrombectomy (n = 13/14, 93%) and relatively lower in patients received the treatment (n = 12/20, 60%, p = 0.033). In contrast, for patients with core growth rate <70 mL/hour, there was not a large difference in poor outcomes between patients with and without the treatment (55% vs. 61%, p = 0.522). Therefore, patients with 'ultrafast core growth' might stand to benefit the most from endovascular treatment.
Collapse
Affiliation(s)
- Longting Lin
- South West Sydney Clinical Campuses, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- University of Newcastle, Newcastle, Australia
| | - Yueming Wang
- Huashan Hospital, Fudan University, Shanghai, China
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | | | - Andrew Bivard
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Kenneth Butcher
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Carlos Garcia-Esperon
- University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Newcastle, Australia
- Department of Neurology, John Hunter Hospital, Newcastle, Australia
| | - Neil J Spratt
- University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Newcastle, Australia
- Department of Neurology, John Hunter Hospital, Newcastle, Australia
| | - Christopher R Levi
- University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Newcastle, Australia
- Department of Neurology, John Hunter Hospital, Newcastle, Australia
| | - Xin Cheng
- Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Huashan Hospital, Fudan University, Shanghai, China
| | - Mark W Parsons
- South West Sydney Clinical Campuses, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- University of Newcastle, Newcastle, Australia
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
- Hunter Medical Research Institute, Newcastle, Australia
- Department of Neurology, John Hunter Hospital, Newcastle, Australia
| | - on behalf of INSPIRE study group
- South West Sydney Clinical Campuses, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- University of Newcastle, Newcastle, Australia
- Huashan Hospital, Fudan University, Shanghai, China
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
- Hunter Medical Research Institute, Newcastle, Australia
- Department of Neurology, John Hunter Hospital, Newcastle, Australia
| |
Collapse
|
5
|
Wouters A, Van Assche T, Scheldeman L, Cheng B, Simonsen CZ, Ebinger M, Nighoghossian N, Muir KW, Endres M, Fiebach JB, Pedraza S, Gerloff C, Thijs V, Thomalla G, Lemmens R. Gadolinium leakage into ocular structures as a marker in stroke: A retrospective analysis of the WAKE-UP trial. Eur Stroke J 2024:23969873241301276. [PMID: 39611442 DOI: 10.1177/23969873241301276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
INTRODUCTION Blood-brain barrier disruption in acute ischemic stroke is a well described phenomenon associated with hemorrhagic complications. The hyperintense acute reperfusion marker (HARM) represents gadolinium leakage in the cerebrospinal fluid. Gadolinium leakage into ocular structures (GLOS) might represent a dysfunction of the blood-ocular barrier. We aimed to investigate the presence of GLOS in the WAKE-UP trial and its association with HARM, hemorrhagic transformation (HT) and functional outcome. PATIENTS AND METHODS Randomized patients from the WAKE-UP trial who underwent dynamic susceptibility contrast perfusion weighted imaging at baseline and fluid attenuated inversion recovery (FLAIR) imaging at both baseline and follow-up, were included. We studied the association between GLOS with baseline and outcome variables. RESULTS We were able to analyze the data of 192/503 (38%) randomized WAKE-UP patients. GLOS was detected in 56 (29%) cases, four times more frequently than HARM (7%). GLOS positive patients were older (73 vs 65 years; p < 0.01), had a lower glomerular infiltration rate (GFR 79.5 vs 87.2 mL/min; p = 0.01), higher white matter hyperintensity volume (15.0 vs 9.9 mL; p < 0.01), less often presented with a large vessel occlusion (27% vs 44%; p = 0.02) and HARM was more often observed (9/56 vs 4/136; p = 0.01). In multivariable analysis the presence of GLOS was not associated with HT nor poor functional outcome (modified Rankin scale 3-6). DISCUSSION AND CONCLUSION GLOS is a relatively common finding in acute ischemic stroke patients and is associated with older age, worse renal function, increased white matter hyperintensity burden and HARM but not with HT or functional outcome.
Collapse
Affiliation(s)
- Anke Wouters
- Department of Neuroscience, KU Leuven, Leuven, Belgium
| | | | | | - Bastian Cheng
- Klinik und Poliklinik für Neurologie, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Martin Ebinger
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Klinik für Neurologie, Medical Park Berlin Humboldtmühle, Berlin, Germany
| | | | - Keith W Muir
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, UK
| | - Matthias Endres
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Partner site Berlin, Berlin, Germany
| | - Jochen B Fiebach
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Salvador Pedraza
- Biomedica de Girona (IDIBGI), Parc Hospitalari Marti i Julia de Salt - EdificiM2, Girona, Spain
| | - Christian Gerloff
- Klinik und Poliklinik für Neurologie, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vincent Thijs
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, VIC, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Heidelberg, VIC, Australia
| | - Götz Thomalla
- Klinik und Poliklinik für Neurologie, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robin Lemmens
- Department of Neuroscience, KU Leuven, Leuven, Belgium
- Neurology, UZ Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Feng L, Yu M, Zheng M, Huang W, Yao F, Qiu C, Lin R, Zhou Y, Wu H, Cao G, Kong D, Yang Y, Xu H. Low blood flow ratio is associated with hemorrhagic transformation secondary to mechanical thrombectomy in patients with acute ischemic stroke. J Neuroradiol 2024; 51:101192. [PMID: 38580049 DOI: 10.1016/j.neurad.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND AND PURPOSE A significant decrease of cerebral blood flow (CBF) is a risk factor for hemorrhagic transformation (HT) in acute ischemic stroke (AIS). This study aimed to ascertain whether the ratio of different CBF thresholds derived from computed tomography perfusion (CTP) is an independent risk factor for HT after mechanical thrombectomy (MT). METHODS A retrospective single center cohort study was conducted on patients with AIS undergoing MT at the First Affiliated Hospital of Wenzhou Medical University from August 2018 to December 2023. The perfusion parameters before thrombectomy were obtained according to CTP automatic processing software. The low blood flow ratio (LFR) was defined as the ratio of brain volume with relative CBF <20 % over volume with relative CBF <30 %. HT was evaluated on the follow-up CT images. Binary logistic regression was used to analyze the correlation between parameters that differ between the two groups with regards to HT occurrence. The predictive efficacy was assessed utilizing the receiver operating characteristic curve. RESULTS In total, 243 patients met the inclusion criteria. During the follow-up, 46.5 % of the patients (113/243) developed HT. Compared with the Non-HT group, the HT group had a higher LFR (0.47 (0.34-0.65) vs. 0.32 (0.07-0.56); P < 0.001). According to the binary logistic regression analysis, the LFR (aOR: 6.737; 95 % CI: 1.994-22.758; P = 0.002), Hypertension history (aOR: 2.231; 95 % CI: 1.201-4.142; P = 0.011), plasma FIB levels before MT (aOR: 0.641; 95 % CI: 0.456-0.902; P = 0.011), and the mismatch ratio (aOR: 0.990; 95 % CI: 0.980-0.999; P = 0.030) were independently associated with HT secondary to MT. The area under the curve of the regression model for predicting HT was 0.741. CONCLUSION LFR, a ratio quantified via CTP, demonstrates potential as an independent risk factor of HT secondary to MT.
Collapse
Affiliation(s)
- Lufei Feng
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Radiology, Zhuji Central Hospital, Shaoxing, Zhejiang, China
| | - Mengying Yu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mo Zheng
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wangle Huang
- Department of Nuclear Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fei Yao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chaomin Qiu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ru Lin
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Zhou
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoyu Wu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guoquan Cao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dexing Kong
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| | - Yunjun Yang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoli Xu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
7
|
Zhang X, Pei J, Xue L, Zhao Z, Xu R, Zhang C, Zhang C, Fu L, Zhang X, Cui L. An-Gong-Niu-Huang-Wan (AGNHW) regulates cerebral blood flow by improving hypoperfusion, cerebrovascular reactivity and microcirculation disturbances after stroke. Chin Med 2024; 19:73. [PMID: 38778375 PMCID: PMC11112936 DOI: 10.1186/s13020-024-00945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The restoration of cerebrovascular regulation and improvement of cerebral blood flow in ischaemic regions are crucial for improving the clinical prognosis after stroke. An-Gong-Niu-Huang-Wan (AGNHW) is a famous traditional compound Chinese medicine that has been used for over 220 years to treat acute ischaemic stroke; however, its role in the regulation of cerebral blood flow is still unclear. The aim of the present study was to investigate the regulatory effect of AGNHW on cerebral blood flow and microcirculation after ischaemic stroke and to elucidate the underlying mechanisms involved. METHODS Male C57BL/6 mice were subjected to distal middle cerebral artery occlusion (dMCAO) and randomly assigned to the sham, MCAO, or AGNHW groups. AGNHW was administered intragastrically 1 h after dMCAO. The rotarod test was utilized to evaluate behavioural function; TTC was used to determine the infarct volume; and ischaemic injury was assessed by detecting brain levels of SOD, MDA and NO. Then, cortical perfusion and acetazolamide-induced cerebrovascular reactivity were assessed using laser speckle contrast imaging, and the velocity and flux of red blood cells in cortical capillaries were detected using two-photon laser scanning microscopy. In addition, we employed RNA-Seq to identify variations in gene expression profiles and assessed endothelium-dependent changes in microcirculatory dysfunction by measuring vasoactive mediator levels. RESULTS AGNHW significantly increased cerebral blood flow, reduced the infarct volume, and promoted functional recovery after cerebral ischaemia. AGNHW increased the velocity and flux of red blood cells in capillaries and improved cerebrovascular reactivity in the ischaemic cortex. Furthermore, AGNHW regulated endothelium-dependent microcirculation, as evidenced by decreases in the expression of endothelins (Edn1, Edn3 and Ednrb) and the ratios of brain and serum TXB2/6-keto-PGF1α and ET-1/CGRP. CONCLUSIONS AGNHW improved cerebral hypoperfusion, regulated cerebrovascular reactivity and attenuated microcirculatory dysfunction within the ischaemic cortex after stroke. This outstanding effect was achieved by modulating the expression of genes related to vascular endothelial cell function and regulating endothelium-dependent vasoactive mediators.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China
| | - Jiamin Pei
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Luping Xue
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China
| | - Zhe Zhao
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Renhao Xu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China
| | - Cong Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China
| | - Cong Zhang
- Department of Medical Service, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Lijie Fu
- Beijing Ruiweisi Pharmaceutical Technology Co., Ltd, Beijing, 100000, China
| | - Xiangjian Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China.
| | - Lili Cui
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China.
| |
Collapse
|
8
|
Chen X, Xu J, Guo S, Zhang S, Wang H, Shen P, Shang Y, Tan M, Geng Y. Blood-brain barrier permeability by CT perfusion predicts parenchymal hematoma after recanalization with thrombectomy. J Neuroimaging 2024; 34:241-248. [PMID: 38018876 DOI: 10.1111/jon.13172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND AND PURPOSE Parenchymal hematoma is a dreaded complication of mechanical thrombectomy after acute ischemic stroke. This study evaluated whether blood-brain barrier permeability measurements based on CT perfusion could be used as predictors of parenchymal hematoma after successful recanalization and compared the predictive value of various permeability parameters in patients with acute ischemic stroke. METHODS We enrolled 53 patients with acute ischemic stroke who underwent mechanical thrombectomy and achieved successful recanalization. Each patient underwent CT, CT angiography, and CT perfusion imaging before treatment. We used relative volume transfer constant (rKtrans ) values, relative permeability-surface area product (rP·S), and relative extraction fraction (rE) to evaluate preoperative blood-brain barrier permeability in the delayed perfusion area. RESULTS Overall, 22 patients (37.7%) developed hemorrhagic transformation after surgery, including 10 patients (16.9%) with hemorrhagic infarction and 11 patients (20.8%) with parenchymal hematoma. The rP·S, rKtrans , and rE of the hypoperfusion area in the parenchymal hematoma group were significantly higher than those in the hemorrhagic infarction and no-hemorrhage transformation groups (p < .01). We found that rE and rP·S were superior to rKtrans in predicting parenchymal hematoma transformation after thrombectomy (P·S area under the curve [AUC] .844 vs. rKtrans AUC .753, z = 2.064, p = .039; rE AUC .907 vs. rKtrans AUC .753, z = 2.399, p = .017). CONCLUSIONS Patients with parenchymal hematoma after mechanical thrombectomy had higher blood-brain barrier permeability in hypoperfusion areas. Among blood-brain barrier permeability measurement parameters, rP·S and rE showed better accuracy for parenchymal hematoma prediction.
Collapse
Affiliation(s)
- Xinyi Chen
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Xu
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shunyuan Guo
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Sheng Zhang
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Huiyuan Wang
- Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Panpan Shen
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yafei Shang
- Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Mingming Tan
- Zhejiang Provincial People's Hospital, Department of Quality Management, Hangzhou, China
| | - Yu Geng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
9
|
Khasanova LT, Koltsova EA, Zashezova MK, Okhtova DK, Gavrilova OV, Zhitkevich DI, Egorov VK. [Neuroimaging predictors of hemorrhagic transformation of ischemic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:34-38. [PMID: 39831360 DOI: 10.17116/jnevro202412412234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Hemorrhagic transformation (HT) is a serious complication that worsens outcomes and increases mortality in patients with ischemic stroke (IS). HT can occur both spontaneously and after reperfusion therapy. Severe ischemic injury in IS is not sufficient in itself to cause HT; one of the key elements in its development is reperfusion. Delayed reperfusion in the area of severe ischemic injury mainly increases the likelihood of HT due to disruptions in the blood-brain barrier (BBB), which, in turn, play a key role in the formation of HT in the acute period of IS. Currently, perfusion CT and MRI are the most widely used imaging methods for assessing the patient's condition and predicting clinical outcome. To assess the degree of ischemic injury, there are various neuroimaging indicators that reflect the level of ischemic damage in IS and can be used as predictors of HT. To date, the most reliable tools for assessing the risk of HT include very low cerebral blood volume (VLCBV), time to reach maximum concentration of contrast agent (Tmax), permeability surface-area product (PS), lesion volume in diffusion-weighted images (DWI), and poor collateral circulation.
Collapse
Affiliation(s)
- L T Khasanova
- SavelyevaCity Clinical Hospital No. 31, Moscow, Russia
| | - E A Koltsova
- Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia
| | - M K Zashezova
- Chazov National Medical Research Centre of Cardiology, Moscow, Russia
| | - D K Okhtova
- Sochi City Clinical Hospital No. 4, Sochi, Russia
| | - O V Gavrilova
- SavelyevaCity Clinical Hospital No. 31, Moscow, Russia
| | - D I Zhitkevich
- Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia
| | - V K Egorov
- Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia
| |
Collapse
|
10
|
Kawano H, Hirano T. Minimal Imaging Requirements. JOURNAL OF NEUROENDOVASCULAR THERAPY 2023; 17:243-256. [PMID: 38025254 PMCID: PMC10657732 DOI: 10.5797/jnet.ra.2023-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/09/2023] [Indexed: 12/01/2023]
Abstract
The minimal requirements for imaging studies prior to endovascular treatment (EVT) of acute ischemic stroke are those that can provide the information necessary to determine the indication for treatment (treatment triage) and procedural strategies without being time-consuming. An important notion is to determine whether the patient can benefit from EVT. We should recognize that the perfect diagnostic imaging technique does not yet exist, and each has advantages and disadvantages. Generally, stroke imaging protocols to triage for EVT include the following three options: 1) non-contrast CT and CTA, 2) CT perfusion and CTA, and 3) MRI and MRA. It is not known if perfusion imaging or MRI is mandatory for patients with stroke presenting within 6 hours of onset, although non-contrast CT alone has less power to obtain the necessary information. Dual-energy CT can distinguish between post-EVT hemorrhage and contrast agent leakage immediately after EVT.
Collapse
Affiliation(s)
- Hiroyuki Kawano
- Department of Stroke and Cerebrovascular Medicine, Kyorin University, Mitaka, Tokyo, Japan
| | - Teruyuki Hirano
- Department of Stroke and Cerebrovascular Medicine, Kyorin University, Mitaka, Tokyo, Japan
| |
Collapse
|
11
|
Bani-Sadr A, Mechtouff L, De Bourguignon C, Mauffrey A, Boutelier T, Cho TH, Cappucci M, Ameli R, Hermier M, Derex L, Nighoghossian N, Berthezene Y. Blood-Brain Barrier Permeability and Kinetics of Inflammatory Markers in Acute Stroke Patients Treated With Thrombectomy. Neurology 2023; 101:e502-e511. [PMID: 37290975 PMCID: PMC10401692 DOI: 10.1212/wnl.0000000000207460] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/13/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The aim of this study was to investigate the relationship between baseline blood-brain barrier (BBB) permeability and the kinetics of circulating inflammatory markers in a cohort of acute ischemic stroke (AIS) patients treated with mechanical thrombectomy. METHODS The CoHort of Patients to Identify Biological and Imaging markerS of CardiovascUlar Outcomes in Stroke includes AIS patients treated with mechanical thrombectomy after admission MRI and undergoing a sequential assessment of circulating inflammatory markers. Baseline dynamic susceptibility perfusion MRI was postprocessed with arrival time correction to provide K2 maps reflecting BBB permeability. After coregistration of apparent diffusion coefficient and K2 maps, the 90th percentile of K2 value was extracted within baseline ischemic core and expressed as a percentage change compared with contralateral normal-appearing white matter. Population was dichotomized according to the median K2 value. Univariable and multiple variable logistic regression analyses were performed to investigate factors associated with increased pretreatment BBB permeability in the whole population and in patients with symptom onset <6 hours. RESULTS In the whole population (n = 105 patients, median K2 = 1.59), patients with an increased BBB permeability had higher serum levels of matrix metalloproteinase (MMP)-9 at H48 (p = 0.02), a higher C-reactive protein (CRP) serum level at H48 (p = 0.01), poorer collateral status (p = 0.01), and a larger baseline ischemic core (p < 0.001). They were more likely to have hemorrhagic transformation (p = 0.008), larger final lesion volume (p = 0.02), and worst neurologic outcome at 3 months (p = 0.04). The multiple variable logistic regression indicated that an increased BBB permeability was associated only with ischemic core volume (odds ratio [OR] 1.04, 95% CI 1.01-1.06, p < 0.0001). Restricting analysis to patients with symptom onset <6 hours (n = 72, median K2 = 1.27), participants with an increased BBB permeability had higher serum levels of MMP-9 at H0 (p = 0.005), H6 (p = 0.004), H24 (p = 0.02), and H48 (p = 0.01), higher CRP levels at H48 (p = 0.02), and a larger baseline ischemic core (p < 0.0001). The multiple variable logistic analysis showed that increased BBB permeability was independently associated with higher H0 MMP-9 levels (OR 1.33, 95% CI 1.12-1.65, p = 0.01) and a larger ischemic core (OR 1.27, 95% CI 1.08-1.59, p = 0.04). DISCUSSION In AIS patients, increased BBB permeability is associated with a larger ischemic core. In the subgroup of patients with symptom onset <6 hours, increased BBB permeability is independently associated with higher H0 MMP-9 levels and a larger ischemic core.
Collapse
Affiliation(s)
- Alexandre Bani-Sadr
- From the Hospices Civils de Lyon (A.B.-S., L.M., C.D.B., T.-H.C., M.C., R.A., M.H., L.D., N.N., Y.B.); and Olea Medical (A.M., T.B.), La Ciotat, France.
| | - Laura Mechtouff
- From the Hospices Civils de Lyon (A.B.-S., L.M., C.D.B., T.-H.C., M.C., R.A., M.H., L.D., N.N., Y.B.); and Olea Medical (A.M., T.B.), La Ciotat, France
| | - Charles De Bourguignon
- From the Hospices Civils de Lyon (A.B.-S., L.M., C.D.B., T.-H.C., M.C., R.A., M.H., L.D., N.N., Y.B.); and Olea Medical (A.M., T.B.), La Ciotat, France
| | - Aela Mauffrey
- From the Hospices Civils de Lyon (A.B.-S., L.M., C.D.B., T.-H.C., M.C., R.A., M.H., L.D., N.N., Y.B.); and Olea Medical (A.M., T.B.), La Ciotat, France
| | - Timothe Boutelier
- From the Hospices Civils de Lyon (A.B.-S., L.M., C.D.B., T.-H.C., M.C., R.A., M.H., L.D., N.N., Y.B.); and Olea Medical (A.M., T.B.), La Ciotat, France
| | - Tae-Hee Cho
- From the Hospices Civils de Lyon (A.B.-S., L.M., C.D.B., T.-H.C., M.C., R.A., M.H., L.D., N.N., Y.B.); and Olea Medical (A.M., T.B.), La Ciotat, France
| | - Matteo Cappucci
- From the Hospices Civils de Lyon (A.B.-S., L.M., C.D.B., T.-H.C., M.C., R.A., M.H., L.D., N.N., Y.B.); and Olea Medical (A.M., T.B.), La Ciotat, France
| | - Roxana Ameli
- From the Hospices Civils de Lyon (A.B.-S., L.M., C.D.B., T.-H.C., M.C., R.A., M.H., L.D., N.N., Y.B.); and Olea Medical (A.M., T.B.), La Ciotat, France
| | - Marc Hermier
- From the Hospices Civils de Lyon (A.B.-S., L.M., C.D.B., T.-H.C., M.C., R.A., M.H., L.D., N.N., Y.B.); and Olea Medical (A.M., T.B.), La Ciotat, France
| | - Laurent Derex
- From the Hospices Civils de Lyon (A.B.-S., L.M., C.D.B., T.-H.C., M.C., R.A., M.H., L.D., N.N., Y.B.); and Olea Medical (A.M., T.B.), La Ciotat, France
| | - Norbert Nighoghossian
- From the Hospices Civils de Lyon (A.B.-S., L.M., C.D.B., T.-H.C., M.C., R.A., M.H., L.D., N.N., Y.B.); and Olea Medical (A.M., T.B.), La Ciotat, France
| | - Yves Berthezene
- From the Hospices Civils de Lyon (A.B.-S., L.M., C.D.B., T.-H.C., M.C., R.A., M.H., L.D., N.N., Y.B.); and Olea Medical (A.M., T.B.), La Ciotat, France
| |
Collapse
|
12
|
Wen X, Xiao Y, Hu X, Chen J, Song F. Prediction of hemorrhagic transformation via pre-treatment CT radiomics in acute ischemic stroke patients receiving endovascular therapy. Br J Radiol 2023; 96:20220439. [PMID: 37086070 PMCID: PMC10321256 DOI: 10.1259/bjr.20220439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 03/01/2023] [Accepted: 03/28/2023] [Indexed: 04/23/2023] Open
Abstract
OBJECTIVE This study aimed to extract radiomics features (RFs) from pre-treatment CT scans in patients with acute ischemic stroke (AIS), and to establish a radiomics model to predict hemorrhagic transformation (HT) after endovascular therapy (EVT). METHODS A total of 105 patients who were diagnosed with AIS [with occlusion of the M1 segment of the middle cerebral artery (MCA) and/or internal carotid artery] and received EVT were enrolled. They were randomly divided into the development cohort (n = 73) and the validation cohort (n = 32). The clinicoradiological data of all patients, including pre-treatment cranial CT without contrast enhancement, CT perfusion, and CT angiography, were obtained. The MCA territory on pre-treatment CT images was segmented to extract RFs associated with HT after EVT. Then, a CT radiomics model based on the selected RFs was constructed to predict HT after EVT. RESULTS The sensitivity, specificity, and area under the curve of the CT radiomics model for predicting HT after EVT based on pre-treatment CT RFs was 0.806, 0.649, and 0.781 (95% confidence interval (CI): 0.675-0.886), respectively, in the development cohort. The sensitivity, specificity, and area under the curve in the validation cohort was 0.625, 0.875, and 0.797 (95% CI: 0.642-0.951), respectively. CONCLUSION CT radiomics analysis is a valuable tool for predicting HT in AIS patients receiving EVT. It may guide the selection of patients in practice and improve procedural safety and effectiveness. ADVANCES IN KNOWLEDGE Identification of the importance of pre-treatment CT radiomics in the prediction of HT in AIS patients after EVT.
Collapse
Affiliation(s)
- Xuehua Wen
- Rehabilitation Medicine Center, Department of Radiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanan Xiao
- Rehabilitation Medicine Center, Department of Radiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xingfei Hu
- Department of Radiology, The First People’s Hospital of Daishan, Zhoushan, Zhejiang, China
| | - Junfa Chen
- Rehabilitation Medicine Center, Department of Radiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fahuan Song
- Department of Nuclear Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Predictive Value of CT Perfusion in Hemorrhagic Transformation after Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Brain Sci 2023; 13:brainsci13010156. [PMID: 36672136 PMCID: PMC9856940 DOI: 10.3390/brainsci13010156] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/02/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Background: Existing studies indicate that some computed tomography perfusion (CTP) parameters may predict hemorrhagic transformation (HT) after acute ischemic stroke (AIS), but there is an inconsistency in the conclusions alongside a lack of comprehensive comparison. Objective: To comprehensively evaluate the predictive value of CTP parameters in HT after AIS. Data sources: A systematical literature review of existing studies was conducted up to 1st October 2022 in six mainstream databases that included original data on the CTP parameters of HT and non-HT groups or on the diagnostic performance of relative cerebral blood flow (rCBF), relative permeability-surface area product (rPS), or relative cerebral blood volume (rCBV) in patients with AIS that completed CTP within 24 h of onset. Data Synthesis: Eighteen observational studies were included. HT and non-HT groups had statistically significant differences in CBF, CBV, PS, rCBF, rCBV, and rPS (p < 0.05 for all). The hierarchical summary receiver operating characteristic (HSROC) revealed that rCBF (area under the curve (AUC) = 0.9), rPS (AUC = 0.89), and rCBV (AUC = 0.85) had moderate diagnostic performances in predicting HT. The pooled sensitivity and specificity of rCBF were 0.85 (95% CI, 0.75−0.91) and 0.83 (95% CI, 0.63−0.94), respectively. Conclusions: rCBF, rPS, and rCBV had moderate diagnostic performances in predicting HT, and rCBF had the best pooled sensitivity and specificity.
Collapse
|
14
|
Sun J, Lam C, Christie L, Blair C, Li X, Werdiger F, Yang Q, Bivard A, Lin L, Parsons M. Risk factors of hemorrhagic transformation in acute ischaemic stroke: A systematic review and meta-analysis. Front Neurol 2023; 14:1079205. [PMID: 36891475 PMCID: PMC9986457 DOI: 10.3389/fneur.2023.1079205] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Background Hemorrhagic transformation (HT) following reperfusion therapies for acute ischaemic stroke often predicts a poor prognosis. This systematic review and meta-analysis aims to identify risk factors for HT, and how these vary with hyperacute treatment [intravenous thrombolysis (IVT) and endovascular thrombectomy (EVT)]. Methods Electronic databases PubMed and EMBASE were used to search relevant studies. Pooled odds ratio (OR) with 95% confidence interval (CI) were estimated. Results A total of 120 studies were included. Atrial fibrillation and NIHSS score were common predictors for any intracerebral hemorrhage (ICH) after reperfusion therapies (both IVT and EVT), while a hyperdense artery sign (OR = 2.605, 95% CI 1.212-5.599, I 2 = 0.0%) and number of thrombectomy passes (OR = 1.151, 95% CI 1.041-1.272, I 2 = 54.3%) were predictors of any ICH after IVT and EVT, respectively. Common predictors for symptomatic ICH (sICH) after reperfusion therapies were age and serum glucose level. Atrial fibrillation (OR = 3.867, 95% CI 1.970-7.591, I 2 = 29.1%), NIHSS score (OR = 1.082, 95% CI 1.060-1.105, I 2 = 54.5%) and onset-to-treatment time (OR = 1.003, 95% CI 1.001-1.005, I 2 = 0.0%) were predictors of sICH after IVT. Alberta Stroke Program Early CT score (ASPECTS) (OR = 0.686, 95% CI 0.565-0.833, I 2 =77.6%) and number of thrombectomy passes (OR = 1.374, 95% CI 1.012-1.866, I 2 = 86.4%) were predictors of sICH after EVT. Conclusion Several predictors of ICH were identified, which varied by treatment type. Studies based on larger and multi-center data sets should be prioritized to confirm the results. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=268927, identifier: CRD42021268927.
Collapse
Affiliation(s)
- Jiacheng Sun
- Sydney Brain Centre, The Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Christina Lam
- Melbourne Brain Centre at Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Lauren Christie
- Sydney Brain Centre, The Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.,Allied Health Research Unit, St Vincent's Health Network Sydney, Sydney, NSW, Australia.,Faculty of Health Sciences, Australian Catholic University, North Sydney, NSW, Australia
| | - Christopher Blair
- Sydney Brain Centre, The Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia.,Department of Neurology and Neurophysiology, Liverpool Hospital, Sydney, NSW, Australia
| | - Xingjuan Li
- Queensland Department of Agriculture and Fisheries, Brisbane, QLD, Australia
| | - Freda Werdiger
- Melbourne Brain Centre at Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Qing Yang
- Apollo Medical Imaging Technology Pty Ltd., Melbourne, VIC, Australia
| | - Andrew Bivard
- Melbourne Brain Centre at Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Longting Lin
- Sydney Brain Centre, The Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Mark Parsons
- Sydney Brain Centre, The Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia.,Department of Neurology and Neurophysiology, Liverpool Hospital, Sydney, NSW, Australia
| |
Collapse
|
15
|
Maïer B, Tsai AS, Einhaus JF, Desilles JP, Ho-Tin-Noé B, Gory B, Sirota M, Leigh R, Lemmens R, Albers G, Olivot JM, Mazighi M, Gaudillière B. Neuroimaging is the new "spatial omic": multi-omic approaches to neuro-inflammation and immuno-thrombosis in acute ischemic stroke. Semin Immunopathol 2023; 45:125-143. [PMID: 36786929 PMCID: PMC10026385 DOI: 10.1007/s00281-023-00984-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
Ischemic stroke (IS) is the leading cause of acquired disability and the second leading cause of dementia and mortality. Current treatments for IS are primarily focused on revascularization of the occluded artery. However, only 10% of patients are eligible for revascularization and 50% of revascularized patients remain disabled at 3 months. Accumulating evidence highlight the prognostic significance of the neuro- and thrombo-inflammatory response after IS. However, several randomized trials of promising immunosuppressive or immunomodulatory drugs failed to show positive results. Insufficient understanding of inter-patient variability in the cellular, functional, and spatial organization of the inflammatory response to IS likely contributed to the failure to translate preclinical findings into successful clinical trials. The inflammatory response to IS involves complex interactions between neuronal, glial, and immune cell subsets across multiple immunological compartments, including the blood-brain barrier, the meningeal lymphatic vessels, the choroid plexus, and the skull bone marrow. Here, we review the neuro- and thrombo-inflammatory responses to IS. We discuss how clinical imaging and single-cell omic technologies have refined our understanding of the spatial organization of pathobiological processes driving clinical outcomes in patients with an IS. We also introduce recent developments in machine learning statistical methods for the integration of multi-omic data (biological and radiological) to identify patient-specific inflammatory states predictive of IS clinical outcomes.
Collapse
Affiliation(s)
- Benjamin Maïer
- Interventional Neuroradiology Department, Hôpital Fondation A. de Rothschild, Paris, France
- Neurology Department, Hôpital Saint-Joseph, Paris, France
- Université Paris-Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France
- FHU NeuroVasc, Paris, France
| | - Amy S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford School of Medicine, 300 Pasteur Drive, Room S238, Stanford, CA, 94305-5117, USA
| | - Jakob F Einhaus
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford School of Medicine, 300 Pasteur Drive, Room S238, Stanford, CA, 94305-5117, USA
| | - Jean-Philippe Desilles
- Interventional Neuroradiology Department, Hôpital Fondation A. de Rothschild, Paris, France
- Université Paris-Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France
- FHU NeuroVasc, Paris, France
| | - Benoît Ho-Tin-Noé
- Université Paris-Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France
| | - Benjamin Gory
- CHRU-Nancy, Department of Diagnostic and Therapeutic Neuroradiology, Université de Lorraine, F-54000, Nancy, France
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Richard Leigh
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Robin Lemmens
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Department of Neurosciences Division of Experimental Neurology, KU Leuven-University of Leuven, Leuven, Belgium
- VIB, Centre for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Gregory Albers
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jean-Marc Olivot
- Vascular Neurology Department, University Hospital of Toulouse, Toulouse, France
| | - Mikael Mazighi
- Interventional Neuroradiology Department, Hôpital Fondation A. de Rothschild, Paris, France.
- Université Paris-Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France.
- FHU NeuroVasc, Paris, France.
- Neurology Department, Lariboisière Hospital, Université Paris-Cité, Paris, France.
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford School of Medicine, 300 Pasteur Drive, Room S238, Stanford, CA, 94305-5117, USA.
| |
Collapse
|
16
|
Moyaert P, Padrela BE, Morgan CA, Petr J, Versijpt J, Barkhof F, Jurkiewicz MT, Shao X, Oyeniran O, Manson T, Wang DJJ, Günther M, Achten E, Mutsaerts HJMM, Anazodo UC. Imaging blood-brain barrier dysfunction: A state-of-the-art review from a clinical perspective. Front Aging Neurosci 2023; 15:1132077. [PMID: 37139088 PMCID: PMC10150073 DOI: 10.3389/fnagi.2023.1132077] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/15/2023] [Indexed: 05/05/2023] Open
Abstract
The blood-brain barrier (BBB) consists of specialized cells that tightly regulate the in- and outflow of molecules from the blood to brain parenchyma, protecting the brain's microenvironment. If one of the BBB components starts to fail, its dysfunction can lead to a cascade of neuroinflammatory events leading to neuronal dysfunction and degeneration. Preliminary imaging findings suggest that BBB dysfunction could serve as an early diagnostic and prognostic biomarker for a number of neurological diseases. This review aims to provide clinicians with an overview of the emerging field of BBB imaging in humans by answering three key questions: (1. Disease) In which diseases could BBB imaging be useful? (2. Device) What are currently available imaging methods for evaluating BBB integrity? And (3. Distribution) what is the potential of BBB imaging in different environments, particularly in resource limited settings? We conclude that further advances are needed, such as the validation, standardization and implementation of readily available, low-cost and non-contrast BBB imaging techniques, for BBB imaging to be a useful clinical biomarker in both resource-limited and well-resourced settings.
Collapse
Affiliation(s)
- Paulien Moyaert
- Department of Medical Imaging, Ghent University Hospital, Ghent, Belgium
- Lawson Health Research Institute, London, ON, Canada
- Department of Neurology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- *Correspondence: Paulien Moyaert,
| | - Beatriz E. Padrela
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Catherine A. Morgan
- School of Psychology and Centre for Brain Research, The University of Auckland, Auckland, New Zealand
- Centre for Advanced MRI, Auckland UniServices Limited, Auckland, New Zealand
| | - Jan Petr
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Jan Versijpt
- Department of Neurology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, United Kingdom
| | | | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Olujide Oyeniran
- Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Tabitha Manson
- Centre for Advanced MRI, Auckland UniServices Limited, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Danny J. J. Wang
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine, University of Bremen, Bremen, Germany
| | - Eric Achten
- Department of Medical Imaging, Ghent University Hospital, Ghent, Belgium
| | - Henk J. M. M. Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Udunna C. Anazodo
- Lawson Health Research Institute, London, ON, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Xie G, Li T, Ren Y, Wang D, Tang W, Li J, Li K. Radiomics-based infarct features on CT predict hemorrhagic transformation in patients with acute ischemic stroke. Front Neurosci 2022; 16:1002717. [PMID: 36213752 PMCID: PMC9533555 DOI: 10.3389/fnins.2022.1002717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/02/2022] [Indexed: 11/15/2022] Open
Abstract
Objective To develop and validate a model based on the radiomics features of the infarct areas on non-contrast-enhanced CT to predict hemorrhagic transformation (HT) in acute ischemic stroke. Materials and methods A total of 118 patients diagnosed with acute ischemic stroke in two centers from January 2019 to February 2022 were included. The radiomics features of infarcted areas on non-contrast-enhanced CT were extracted using 3D-Slicer. A univariate analysis and the least absolute shrinkage and selection operator (LASSO) were used to select features, and the radiomics score (Rad-score) was then constructed. The predictive model of HT was constructed by analyzing the Rad-score and clinical and imaging features in the training cohort, and it was verified in the validation cohort. The model was evaluated with the receiver operating characteristic curve, calibration curve and decision curve, and the prediction performance of the model in different scenarios was further discussed hierarchically. Results Of the 118 patients, 52 developed HT, including 21 cases of hemorrhagic infarct (HI) and 31 cases of parenchymal hematoma (PH). The Rad-score was constructed from five radiomics features and was the only independent predictor for HT. The predictive model was constructed from the Rad-score. The area under the curve (AUCs) of the model for predicting HT in the training and validation cohorts were 0.845 and 0.750, respectively. Calibration curve and decision curve analyses showed that the model performed well. Further analysis found that the model predicted HT for different infarct sizes or treatment methods in the training and validation cohorts with 78.3 and 71.4% accuracy, respectively. For all samples, the model predicted an AUC of 0.754 for HT in patients within 4.5 h since stroke onset, and predicted an AUC of 0.648 for PH. Conclusion This model, which was based on CT radiomics features, could help to predict HT in the setting of acute ischemic stroke for any infarct size and provide guiding suggestions for clinical treatment and prognosis evaluation.
Collapse
Affiliation(s)
- Gang Xie
- North Sichuan Medical College, Nanchong, China
| | - Ting Li
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Yitao Ren
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Danni Wang
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Wuli Tang
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Junlin Li
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Kang Li
- Department of Radiology, Chongqing General Hospital, Chongqing, China
- *Correspondence: Kang Li,
| |
Collapse
|
18
|
Ng FC, Churilov L, Yassi N, Kleinig TJ, Thijs V, Wu TY, Shah DG, Dewey HM, Sharma G, Desmond PM, Yan B, Parsons MW, Donnan GA, Davis SM, Mitchell PJ, Leigh R, Campbell BCV. Microvascular Dysfunction in Blood-Brain Barrier Disruption and Hypoperfusion Within the Infarct Posttreatment Are Associated With Cerebral Edema. Stroke 2022; 53:1597-1605. [PMID: 34937423 DOI: 10.1161/strokeaha.121.036104] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Factors contributing to cerebral edema in the post-hyperacute period of ischemic stroke (first 24-72 hours) are poorly understood. Blood-brain barrier (BBB) disruption and postischemic hyperperfusion reflect microvascular dysfunction and are associated with hemorrhagic transformation. We investigated the relationships between BBB integrity, cerebral blood flow, and space-occupying cerebral edema in patients who received acute reperfusion therapy. METHODS We performed a pooled analysis of patients treated for anterior circulation large vessel occlusion in the EXTEND-IA TNK and EXTEND-IA TNK part 2 trials who had MRI with dynamic susceptibility contrast-enhanced perfusion-weighted imaging 24 hours after treatment. We investigated the associations between BBB disruption and cerebral blood flow within the infarct with cerebral edema assessed using 2 metrics: first midline shift (MLS) trichotomized as an ordinal scale of negligible (<1 mm), mild (≥1 to <5 mm), or severe (≥5 mm), and second relative hemispheric volume (rHV), defined as the ratio of the 3-dimensional volume of the ischemic hemisphere relative to the contralateral hemisphere. RESULTS Of 238 patients analyzed, 133 (55.9%) had negligible, 93 (39.1%) mild, and 12 (5.0%) severe MLS at 24 hours. The associated median rHV was 1.01 (IQR, 1.00-1.028), 1.03 (IQR, 1.01-1.077), and 1.15 (IQR, 1.08-1.22), respectively. MLS and rHV were associated with poor functional outcome at 90 days (P<0.002). Increased BBB permeability was independently associated with more edema after adjusting for age, occlusion location, reperfusion, parenchymal hematoma, and thrombolytic agent used (MLS cOR, 1.12 [95% CI, 1.03-1.20], P=0.005; rHV β, 0.39 [95% CI, 0.24-0.55], P<0.0001), as was reduced cerebral blood flow (MLS cOR, 0.25 [95% CI, 0.10-0.58], P=0.001; rHV β, -2.95 [95% CI, -4.61 to -11.29], P=0.0006). In subgroup analysis of patients with successful reperfusion (extended Treatment in Cerebral Ischemia 2b-3, n=200), reduced cerebral blood flow remained significantly associated with edema (MLS cOR, 0.37 [95% CI, 0.14-0.98], P=0.045; rHV β, -2.59 [95% CI, -4.32 to -0.86], P=0.004). CONCLUSIONS BBB disruption and persistent hypoperfusion in the infarct after reperfusion treatment is associated with space-occupying cerebral edema. Further studies evaluating microvascular dysfunction during the post-hyperacute period as biomarkers of poststroke edema and potential therapeutic targets are warranted.
Collapse
Affiliation(s)
- Felix C Ng
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia (F.C.N., L.C., N.Y., G.S., B.Y., M.W.P., G.A.D., S.M.D., B.C.V.C.)
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia (F.C.N., V.T.)
| | - Leonid Churilov
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia (F.C.N., L.C., N.Y., G.S., B.Y., M.W.P., G.A.D., S.M.D., B.C.V.C.)
- Department of Neurology, Austin Hospital, Austin Health, Heidelberg, Australia (L.C., V.T., B.C.V.C.)
- Melbourne Medical School, The University of Melbourne, Heidelberg, Australia (L.C.)
| | - Nawaf Yassi
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia (F.C.N., L.C., N.Y., G.S., B.Y., M.W.P., G.A.D., S.M.D., B.C.V.C.)
- Population Health and Immunity Division. The Walter and Eliza Hall Institute of Medical Research. Parkville, Australia (N.Y.)
| | - Timothy J Kleinig
- Department of Neurology, Royal Adelaide Hospital, Australia (T.J.K.)
| | - Vincent Thijs
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia (F.C.N., V.T.)
- Department of Neurology, Austin Hospital, Austin Health, Heidelberg, Australia (L.C., V.T., B.C.V.C.)
| | - Teddy Y Wu
- Department of Neurology, Christchurch Hospital, New Zealand (T.Y.W.)
| | - Darshan G Shah
- Department of Neurology, Princess Alexandra Hospital, Brisbane, Australia (D.G.S.)
| | - Helen M Dewey
- Eastern Health and Eastern Health Clinical School, Department of Neurosciences, Monash University, Clayton, Australia (H.M.D.)
| | - Gargan Sharma
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia (F.C.N., L.C., N.Y., G.S., B.Y., M.W.P., G.A.D., S.M.D., B.C.V.C.)
| | - Patricia M Desmond
- Department of Radiology, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia (P.M.D., B.Y., P.J.M.)
| | - Bernard Yan
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia (F.C.N., L.C., N.Y., G.S., B.Y., M.W.P., G.A.D., S.M.D., B.C.V.C.)
- Department of Radiology, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia (P.M.D., B.Y., P.J.M.)
| | - Mark W Parsons
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia (F.C.N., L.C., N.Y., G.S., B.Y., M.W.P., G.A.D., S.M.D., B.C.V.C.)
| | - Geoffrey A Donnan
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia (F.C.N., L.C., N.Y., G.S., B.Y., M.W.P., G.A.D., S.M.D., B.C.V.C.)
| | - Stephen M Davis
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia (F.C.N., L.C., N.Y., G.S., B.Y., M.W.P., G.A.D., S.M.D., B.C.V.C.)
| | - Peter J Mitchell
- Department of Radiology, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia (P.M.D., B.Y., P.J.M.)
| | - Richard Leigh
- Department of Neurology, John Hopkins University, Baltimore, MD (R.L.)
| | - Bruce C V Campbell
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia (F.C.N., L.C., N.Y., G.S., B.Y., M.W.P., G.A.D., S.M.D., B.C.V.C.)
- Department of Neurology, Austin Hospital, Austin Health, Heidelberg, Australia (L.C., V.T., B.C.V.C.)
| |
Collapse
|
19
|
Chen H, Luo Y, Tsoi B, Gu B, Qi S, Shen J. Angong Niuhuang Wan reduces hemorrhagic transformation and mortality in ischemic stroke rats with delayed thrombolysis: involvement of peroxynitrite-mediated MMP-9 activation. Chin Med 2022; 17:51. [PMID: 35477576 PMCID: PMC9044615 DOI: 10.1186/s13020-022-00595-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/18/2022] [Indexed: 12/22/2022] Open
Abstract
Background Hemorrhagic transformation (HT) is a common complication of delayed tissue plasminogen activator (t-PA) treatment for ischemic stroke. Peroxynitrite plays an important role in the breakdown of blood–brain barrier (BBB) and the development of HT. We tested the hypothesis that Angong Niuhuang Wan (AGNHW), a traditional Chinese medicinal formula, could be used in conjunction with t-PA to protect the BBB, minimize HT, and improve neurological function by suppressing peroxynitrite-mediated matrix metalloproteinase-9 (MMP-9) activation. Methods We first performed quality control study and chemical identification of AGNHW by using UPLC. In animal experiments, male Sprague–Dawley rats were subjected to 5 h of middle cerebral artery occlusion (MCAO) followed by 19 h of reperfusion plus t-PA infusion (10 mg/kg) at 5 h of cerebral ischemia. AGNHW (257 mg/kg) was given orally at 2 h after MCAO. Hemorrhagic transformation was measured using hemorrhagic scores and hemoglobin levels in ischemic brains. Evans blue leakage was utilized to assess the severity of the blood–brain barrier (BBB) damage. The modified neurologic severity score (mNSS) test was used to assess neurological functions. Peroxynitrite and superoxide was detected by using fluorescent probes. MMP-9 activity and expression were examined by gelatin zymography and immunostaining. The antioxidant effects were also studied by using brain microvascular endothelial b.End3 cells exposed to 5 h of oxygen and glucose deprivation (OGD) plus 5 h of reoxygenation with t-PA treatment (20 µg/ml). Results AGNHW significantly reduced the BBB damage, brain edema, reduced hemorrhagic transformation, enhanced neurological function, and reduced mortality rate in the ischemic stroke rats with t-PA treatment. AGNHW reduced peroxynitrite and superoxide in vivo and in vitro and six active chemical compounds were identified from AGNHW with peroxynitrite scavenging activity. Furthermore, AGNHW inhibited MMP-9 activity, and preserved tight junction protein claudin-5 and collagen IV in the ischemic brains. Conclusion AGNHW could be a potential adjuvant therapy with t-PA to protect the BBB integrity, reduce HT, and improve therapeutic outcome in ischemic stroke treatment via inhibiting peroxynitrite-mediated MMP-9 activation. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00595-7.
Collapse
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Yunxia Luo
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Bun Tsoi
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Bing Gu
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Suhua Qi
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China.
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, SAR, People's Republic of China. .,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China. .,School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
20
|
Candelario-Jalil E, Dijkhuizen RM, Magnus T. Neuroinflammation, Stroke, Blood-Brain Barrier Dysfunction, and Imaging Modalities. Stroke 2022; 53:1473-1486. [PMID: 35387495 PMCID: PMC9038693 DOI: 10.1161/strokeaha.122.036946] [Citation(s) in RCA: 364] [Impact Index Per Article: 121.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Maintaining blood-brain barrier (BBB) integrity is crucial for the homeostasis of the central nervous system. Structurally comprising the BBB, brain endothelial cells interact with pericytes, astrocytes, neurons, microglia, and perivascular macrophages in the neurovascular unit. Brain ischemia unleashes a profound neuroinflammatory response to remove the damaged tissue and prepare the brain for repair. However, the intense neuroinflammation occurring during the acute phase of stroke is associated with BBB breakdown, neuronal injury, and worse neurological outcomes. Here, we critically discuss the role of neuroinflammation in ischemic stroke pathology, focusing on the BBB and the interactions between central nervous system and peripheral immune responses. We highlight inflammation-driven injury mechanisms in stroke, including oxidative stress, increased MMP (matrix metalloproteinase) production, microglial activation, and infiltration of peripheral immune cells into the ischemic tissue. We provide an updated overview of imaging techniques for in vivo detection of BBB permeability, leukocyte infiltration, microglial activation, and upregulation of cell adhesion molecules following ischemic brain injury. We discuss the possibility of clinical implementation of imaging modalities to assess stroke-associated neuroinflammation with the potential to provide image-guided diagnosis and treatment. We summarize the results from several clinical studies evaluating the efficacy of anti-inflammatory interventions in stroke. Although convincing preclinical evidence suggests that neuroinflammation is a promising target for ischemic stroke, thus far, translating these results into the clinical setting has proved difficult. Due to the dual role of inflammation in the progression of ischemic damage, more research is needed to mechanistically understand when the neuroinflammatory response begins the transition from injury to repair. This could have important implications for ischemic stroke treatment by informing time- and context-specific therapeutic interventions.
Collapse
Affiliation(s)
- Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville (E.C-J)
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, the Netherlands (R.M.D.)
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (T.M.)
| |
Collapse
|
21
|
Hong JM, Kim DS, Kim M. Hemorrhagic Transformation After Ischemic Stroke: Mechanisms and Management. Front Neurol 2021; 12:703258. [PMID: 34917010 PMCID: PMC8669478 DOI: 10.3389/fneur.2021.703258] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/21/2021] [Indexed: 01/01/2023] Open
Abstract
Symptomatic hemorrhagic transformation (HT) is one of the complications most likely to lead to death in patients with acute ischemic stroke. HT after acute ischemic stroke is diagnosed when certain areas of cerebral infarction appear as cerebral hemorrhage on radiological images. Its mechanisms are usually explained by disruption of the blood-brain barrier and reperfusion injury that causes leakage of peripheral blood cells. In ischemic infarction, HT may be a natural progression of acute ischemic stroke and can be facilitated or enhanced by reperfusion therapy. Therefore, to balance risks and benefits, HT occurrence in acute stroke settings is an important factor to be considered by physicians to determine whether recanalization therapy should be performed. This review aims to illustrate the pathophysiological mechanisms of HT, outline most HT-related factors after reperfusion therapy, and describe prevention strategies for the occurrence and enlargement of HT, such as blood pressure control. Finally, we propose a promising therapeutic approach based on biological research studies that would help clinicians treat such catastrophic complications.
Collapse
Affiliation(s)
- Ji Man Hong
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon-si, South Korea
- Department of Biomedical Science, Ajou University School of Medicine, Ajou University Medical Center, Suwon-si, South Korea
| | - Da Sol Kim
- Department of Biomedical Science, Ajou University School of Medicine, Ajou University Medical Center, Suwon-si, South Korea
| | - Min Kim
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon-si, South Korea
| |
Collapse
|
22
|
Cui Q, Ma YH, Yu HY, Zhang YL, Qin XD, Ge SQ, Zhang GW. Systematic analysis of the mechanism of hydroxysafflor yellow A for treating ischemic stroke based on network pharmacology technology. Eur J Pharmacol 2021; 908:174360. [PMID: 34302817 DOI: 10.1016/j.ejphar.2021.174360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 01/18/2023]
Abstract
In this study, we analyzed the mechanism of hydroxysafflor yellow A (HSYA) for treating ischemic stroke (IS) based on network pharmacology tools, and verified the kernel targets via animal experiments. The targets of HSYA were collected via PharmMapper server and the IS-related targets were searched using Genecards, Online Mendelian Inheritance in Man, Therapeutic Target, and Disgenet databases. The targets identified from the above two steps were overlapped to acquire candidate targets involved in the effects of HSYA for treating IS. Subsequently, the Database for Annotation, Visualization, and Integrated Discovery was used for gene ontology analysis and the Kyoto encyclopedia of genes and genomes pathway analysis. Cytoscape 3.7.1 was applied to establish the component-target-pathway network. Potential core targets were obtained by protein-protein interaction analysis. Furthermore, Autodock Vina was used to identify core genes, and animal experiments was used to verify the expression level of core genes. On the basis of the modified neurologic severity score and the results of 2,3,5-Triphenyltetrazolium chloride and Hematoxylin-eosin staining, we confirmed that HSYA reduced the infarct volume in rats and protected neuronal cells in the hippocampal region after IS. Western blot and immunohistochemical staining showed that HSYA increased the expression of epidermal growth factor receptor, hypoxia inducible factor 1 alpha, and endothelial nitric oxide synthase (P < 0.05). The effects of HSYA on IS are mediated through several targets and pathways related to the regulation of oxidative stress and the renewal of cell and blood vessels while improving post-ischemic brain impairment.
Collapse
Affiliation(s)
- Qian Cui
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, 071002, China
| | - Yu-Hui Ma
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, China
| | - Hao-Yu Yu
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, 071002, China
| | - Yu-Liang Zhang
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, 071002, China
| | - Xiu-de Qin
- Shenzhen TCM Hospital, Shenzhen, Guangdong, 518000, China
| | - Shao-Qin Ge
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, 071002, China
| | - Guo-Wei Zhang
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
23
|
Ande SR, Grynspan J, Aviv RI, Shankar JJS. Imaging for Predicting Hemorrhagic Transformation of Acute Ischemic Stroke-A Narrative Review. Can Assoc Radiol J 2021; 73:194-202. [PMID: 34154379 DOI: 10.1177/08465371211018369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Hemorrhagic transformation is caused by extravasation of blood products from vessels after acute ischemic stroke. It is an undesirable and potentially devastating complication, which occurs in 10%-40% of clinical cases. Hemorrhagic transformation is classified into four subtypes based on European cooperative acute stroke study II. Predicting hemorrhagic complications at presentation can be useful life saving/altering decisions for the patient. Also, understanding the mechanisms of hemorrhagic transformation can lead to new treatments and intervention measures. We highlighted various imaging techniques that have been used to predict hemorrhagic transformation. Specifically, we looked at the usefulness of perfusion and permeability imaging for hemorrhagic transformation. Use of imaging to predict hemorrhagic transformation could change patient management that may lead to the prevention of hemorrhagic transformation before it occurs. We concluded that the current evidence is not strong enough to rely on these imaging parameters for predicting hemorrhagic transformation and more studies are required.
Collapse
Affiliation(s)
- Sudharsana Rao Ande
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jonathan Grynspan
- Department of Radiology, Prairie Skies Medical Imaging, Regina, Saskatchewan, Canada
| | - Richard I Aviv
- Department of Radiology, The Ottawa Hospital and University of Ottawa, Ottawa, Ontario, Canada
| | - Jai Jai Shiva Shankar
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
24
|
Magoufis G, Safouris A, Raphaeli G, Kargiotis O, Psychogios K, Krogias C, Palaiodimou L, Spiliopoulos S, Polizogopoulou E, Mantatzis M, Finitsis S, Karapanayiotides T, Ellul J, Bakola E, Brountzos E, Mitsias P, Giannopoulos S, Tsivgoulis G. Acute reperfusion therapies for acute ischemic stroke patients with unknown time of symptom onset or in extended time windows: an individualized approach. Ther Adv Neurol Disord 2021; 14:17562864211021182. [PMID: 34122624 PMCID: PMC8175833 DOI: 10.1177/17562864211021182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/10/2021] [Indexed: 02/05/2023] Open
Abstract
Recent randomized controlled clinical trials (RCTs) have revolutionized acute ischemic stroke care by extending the use of intravenous thrombolysis and endovascular reperfusion therapies in time windows that have been originally considered futile or even unsafe. Both systemic and endovascular reperfusion therapies have been shown to improve outcome in patients with wake-up strokes or symptom onset beyond 4.5 h for intravenous thrombolysis and beyond 6 h for endovascular treatment; however, they require advanced neuroimaging to select stroke patients safely. Experts have proposed simpler imaging algorithms but high-quality data on safety and efficacy are currently missing. RCTs used diverse imaging and clinical inclusion criteria for patient selection during the dawn of this novel stroke treatment paradigm. After taking into consideration the dismal prognosis of nonrecanalized ischemic stroke patients and the substantial clinical benefit of reperfusion therapies in selected late presenters, we propose rescue reperfusion therapies for acute ischemic stroke patients not fulfilling all clinical and imaging inclusion criteria as an option in a subgroup of patients with clinical and radiological profiles suggesting low risk for complications, notably hemorrhagic transformation as well as local or remote parenchymal hemorrhage. Incorporating new data to treatment algorithms may seem perplexing to stroke physicians, since treatment and imaging capabilities of each stroke center may dictate diverse treatment pathways. This narrative review will summarize current data that will assist clinicians in the selection of those late presenters that will most likely benefit from acute reperfusion therapies. Different treatment algorithms are provided according to available neuroimaging and endovascular treatment capabilities.
Collapse
Affiliation(s)
- Georgios Magoufis
- Interventional Neuroradiology Unit, Metropolitan Hospital, Piraeus, Greece
| | - Apostolos Safouris
- Stroke Unit, Metropolitan Hospital, Piraeus, Greece
- Interventional Neuroradiology Unit, Rabin Medical Center, Beilinson Hospital, Petach-Tikva, Israel
- Second Department of Neurology, National & Kapodistrian University of Athens, School of Medicine, “Attikon” University Hospital, Athens, Greece
| | - Guy Raphaeli
- Interventional Neuroradiology Unit, Rabin Medical Center, Beilinson Hospital, Petach-Tikva, Israel
| | | | - Klearchos Psychogios
- Stroke Unit, Metropolitan Hospital, Piraeus, Greece
- Second Department of Neurology, National & Kapodistrian University of Athens, School of Medicine, “Attikon” University Hospital, Athens, Greece
| | - Christos Krogias
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Lina Palaiodimou
- Second Department of Neurology, National & Kapodistrian University of Athens, School of Medicine, “Attikon” University Hospital, Athens, Greece
| | - Stavros Spiliopoulos
- Second Department of Radiology, Interventional Radiology Unit, “ATTIKON” University General Hospital, Athens, Greece
| | - Eftihia Polizogopoulou
- Emergency Medicine Clinic, National & Kapodistrian University of Athens, School of Medicine, “Attikon” University Hospital, Athens, Greece
| | - Michael Mantatzis
- Department of Radiology, University Hospital of Alexandroupolis, Democritus University of Thrace, School of Medicine, Alexandroupolis, Greece
| | - Stephanos Finitsis
- Department of Interventional Radiology, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodore Karapanayiotides
- Second Department of Neurology, Aristotle University of Thessaloniki, School of Medicine, Faculty of Health Sciences, AHEPA University Hospital, Thessaloniki, Greece
| | - John Ellul
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, Patras, Greece
| | - Eleni Bakola
- Second Department of Neurology, National & Kapodistrian University of Athens, School of Medicine, “Attikon” University Hospital, Athens, Greece
| | - Elias Brountzos
- Second Department of Radiology, Interventional Radiology Unit, “ATTIKON” University General Hospital, Athens, Greece
| | - Panayiotis Mitsias
- Department of Neurology Medical School, University of Crete, Heraklion, Crete, Greece
| | - Sotirios Giannopoulos
- Second Department of Neurology, National & Kapodistrian University of Athens, School of Medicine, “Attikon” University Hospital, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, National & Kapodistrian, University of Athens, School of Medicine, “Attikon” University Hospital, Iras 39, Gerakas Attikis, Athens, 15344, Greece
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
25
|
Charbonnier G, Bonnet L, Biondi A, Moulin T. Intracranial Bleeding After Reperfusion Therapy in Acute Ischemic Stroke. Front Neurol 2021; 11:629920. [PMID: 33633661 PMCID: PMC7900408 DOI: 10.3389/fneur.2020.629920] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Intracranial hemorrhage is one of the most feared complications following brain infarct. Ischemic tissues have a natural tendency to bleed. Moreover, the first recanalization trials using intravenous thrombolysis have shown an increase in mild to severe intracranial hemorrhage. Symptomatic intracerebral hemorrhage is strongly associated with poor outcomes and is an important factor in recanalization decisions. Stroke physicians have to weigh the potential benefit of recanalization therapies, first, with different risks of intracranial hemorrhage described in randomized controlled trials, and second with numerous risk markers that have been found to be associated with intracranial hemorrhage in retrospective series. These decisions have become quite complex with different intravenous thrombolytics and mechanical thrombectomy. This review aims to outline some elements of the pathophysiological mechanisms and classifications, describe most of the risk factors identified for each reperfusion therapy, and finally suggest future research directions that could help physicians dealing with these complications.
Collapse
Affiliation(s)
- Guillaume Charbonnier
- Neurology Department, Besançon University Hospital, Besançon, France.,Interventional Neuroradiology Department, Besançon University Hospital, Besançon, France.,EA 481 Neurosciences laboratory, Franche-Comté University, Besançon, France
| | - Louise Bonnet
- Neurology Department, Besançon University Hospital, Besançon, France
| | - Alessandra Biondi
- Interventional Neuroradiology Department, Besançon University Hospital, Besançon, France.,CIC-1431 Inserm, Besançon, France
| | - Thierry Moulin
- Neurology Department, Besançon University Hospital, Besançon, France.,EA 481 Neurosciences laboratory, Franche-Comté University, Besançon, France.,CIC-1431 Inserm, Besançon, France
| |
Collapse
|
26
|
Debatisse J, Eker OF, Wateau O, Cho TH, Wiart M, Ramonet D, Costes N, Mérida I, Léon C, Dia M, Paillard M, Confais J, Rossetti F, Langlois JB, Troalen T, Iecker T, Le Bars D, Lancelot S, Bouchier B, Lukasziewicz AC, Oudotte A, Nighoghossian N, Ovize M, Contamin H, Lux F, Tillement O, Canet-Soulas E. PET-MRI nanoparticles imaging of blood-brain barrier damage and modulation after stroke reperfusion. Brain Commun 2020; 2:fcaa193. [PMID: 33305265 PMCID: PMC7716090 DOI: 10.1093/braincomms/fcaa193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
In an acute ischaemic stroke, understanding the dynamics of blood-brain barrier injury is of particular importance for the prevention of symptomatic haemorrhagic transformation. However, the available techniques assessing blood-brain barrier permeability are not quantitative and are little used in the context of acute reperfusion therapy. Nanoparticles cross the healthy or impaired blood-brain barrier through combined passive and active processes. Imaging and quantifying their transfer rate could better characterize blood-brain barrier damage and refine the delivery of neuroprotective agents. We previously developed an original endovascular stroke model of acute ischaemic stroke treated by mechanical thrombectomy followed by positron emission tomography-magnetic resonance imaging. Cerebral capillary permeability was quantified for two molecule sizes: small clinical gadolinium Gd-DOTA (<1 nm) and AGuIX® nanoparticles (∼5 nm) used for brain theranostics. On dynamic contrast-enhanced magnetic resonance imaging, the baseline transfer constant K trans was 0.94 [0.48, 1.72] and 0.16 [0.08, 0.33] ×10-3 min-1, respectively, in the normal brain parenchyma, consistent with their respective sizes, and 1.90 [1.23, 3.95] and 2.86 [1.39, 4.52] ×10-3 min-1 in choroid plexus, confirming higher permeability than brain parenchyma. At early reperfusion, K trans for both Gd-DOTA and AGuIX® nanoparticles was significantly higher within the ischaemic area compared to the contralateral hemisphere; 2.23 [1.17, 4.13] and 0.82 [0.46, 1.87] ×10-3 min-1 for Gd-DOTA and AGuIX® nanoparticles, respectively. With AGuIX® nanoparticles, K trans also increased within the ischaemic growth areas, suggesting added value for AGuIX®. Finally, K trans was significantly lower in both the lesion and the choroid plexus in a drug-treated group (ciclosporin A, n = 7) compared to placebo (n = 5). K trans quantification with AGuIX® nanoparticles can monitor early blood-brain barrier damage and treatment effect in ischaemic stroke after reperfusion.
Collapse
Affiliation(s)
- Justine Debatisse
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France.,Siemens-Healthcare SAS, Saint-Denis, France
| | - Omer Faruk Eker
- CREATIS, CNRS UMR-5220, INSERM U1206, Université Lyon 1, INSA Lyon Bât. Blaise Pascal, 7 Avenue Jean Capelle, Villeurbanne 69621, France.,Hospices Civils of Lyon, 69000 Lyon, France
| | | | - Tae-Hee Cho
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France.,Hospices Civils of Lyon, 69000 Lyon, France
| | - Marlène Wiart
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - David Ramonet
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | | | | | - Christelle Léon
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Maya Dia
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France.,Laboratory of Experimental and Clinical Pharmacology, Faculty of Sciences, Lebanese University-Beirut, Lebanon
| | - Mélanie Paillard
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | | | - Fabien Rossetti
- Univ Lyon, Institut Lumière Matière, CNRS UMR5306, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | | | | | | | - Didier Le Bars
- Hospices Civils of Lyon, 69000 Lyon, France.,CERMEP - Imagerie du Vivant, Lyon, France
| | - Sophie Lancelot
- Hospices Civils of Lyon, 69000 Lyon, France.,CERMEP - Imagerie du Vivant, Lyon, France
| | | | | | | | - Norbert Nighoghossian
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France.,Hospices Civils of Lyon, 69000 Lyon, France
| | - Michel Ovize
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France.,Hospices Civils of Lyon, 69000 Lyon, France
| | | | - François Lux
- Univ Lyon, Institut Lumière Matière, CNRS UMR5306, Université Claude Bernard Lyon 1, 69000 Lyon, France.,Institut Universitaire de France (IUF), France
| | - Olivier Tillement
- Univ Lyon, Institut Lumière Matière, CNRS UMR5306, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Emmanuelle Canet-Soulas
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France
| |
Collapse
|