Wiest G, Demer JL, Tian J, Crane BT, Baloh RW. Vestibular function in severe bilateral vestibulopathy.
J Neurol Neurosurg Psychiatry 2001;
71:53-7. [PMID:
11413262 PMCID:
PMC1737454 DOI:
10.1136/jnnp.71.1.53]
[Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES
To assess residual vestibular function in patients with severe bilateral vestibulopathy comparing low frequency sinusoidal rotation with the novel technique of random, high acceleration rotation of the whole body.
METHODS
Eye movements were recorded by electro-oculography in darkness during passive, whole body sinusoidal yaw rotations at frequencies between 0.05 and 1.6 Hz in four patients who had absent caloric vestibular responses. These were compared with recordings using magnetic search coils during the first 100 ms after onset of whole body yaw rotation at peak accelerations of 2800 degrees /s(2). Off centre rotations added novel information about otolithic function.
RESULTS
Sinusoidal yaw rotations at 0.05 Hz, peak velocity 240 degrees/s yielded minimal responses, with gain (eye velocity/head velocity)<0.02, but gain increased and phase decreased at frequencies between 0.2 and 1.6 Hz in a manner resembling the vestibulo-ocular reflex. By contrast, the patients had profoundly attenuated responses to both centred and eccentric high acceleration transients, representing virtually absent responses to this powerful vestibular stimulus.
CONCLUSION
The analysis of the early ocular response to random, high acceleration rotation of the whole body disclosed a profound deficit of semicircular canal and otolith function in patients for whom higher frequency sinusoidal testing was only modestly abnormal. This suggests that the high frequency responses during sinusoidal rotation were of extravestibular origin. Contributions from the somatosensory or central predictor mechanisms, might account for the generation of these responses. Random, transient rotation is better suited than steady state rotation for quantifying vestibular function in vestibulopathic patients.
Collapse