1
|
Chrast L, Tratsiak K, Planas-Iglesias J, Daniel L, Prudnikova T, Brezovsky J, Bednar D, Kuta Smatanova I, Chaloupkova R, Damborsky J. Deciphering the Structural Basis of High Thermostability of Dehalogenase from Psychrophilic Bacterium Marinobacter sp. ELB17. Microorganisms 2019; 7:E498. [PMID: 31661858 PMCID: PMC6920932 DOI: 10.3390/microorganisms7110498] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
Haloalkane dehalogenases are enzymes with a broad application potential in biocatalysis, bioremediation, biosensing and cell imaging. The new haloalkane dehalogenase DmxA originating from the psychrophilic bacterium Marinobacter sp. ELB17 surprisingly possesses the highest thermal stability (apparent melting temperature Tm,app = 65.9 °C) of all biochemically characterized wild type haloalkane dehalogenases belonging to subfamily II. The enzyme was successfully expressed and its crystal structure was solved at 1.45 Å resolution. DmxA structure contains several features distinct from known members of haloalkane dehalogenase family: (i) a unique composition of catalytic residues; (ii) a dimeric state mediated by a disulfide bridge; and (iii) narrow tunnels connecting the enzyme active site with the surrounding solvent. The importance of narrow tunnels in such paradoxically high stability of DmxA enzyme was confirmed by computational protein design and mutagenesis experiments.
Collapse
Affiliation(s)
- Lukas Chrast
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
| | - Katsiaryna Tratsiak
- Institute of Chemistry and Biochemistry, Faculty of Science, University of South Bohemia Ceske Budejovice and Institute of Microbiology Academy of Sciences of the Czech Republic, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic.
| | - Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
| | - Lukas Daniel
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
| | - Tatyana Prudnikova
- Institute of Chemistry and Biochemistry, Faculty of Science, University of South Bohemia Ceske Budejovice and Institute of Microbiology Academy of Sciences of the Czech Republic, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.
| | - Jan Brezovsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
| | - Ivana Kuta Smatanova
- Institute of Chemistry and Biochemistry, Faculty of Science, University of South Bohemia Ceske Budejovice and Institute of Microbiology Academy of Sciences of the Czech Republic, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
- Enantis Ltd., Biotechnology Incubator INBIT, Kamenice 771/34, 625 00 Brno, Czech Republic.
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
2
|
Vanacek P, Sebestova E, Babkova P, Bidmanova S, Daniel L, Dvorak P, Stepankova V, Chaloupkova R, Brezovsky J, Prokop Z, Damborsky J. Exploration of Enzyme Diversity by Integrating Bioinformatics with Expression Analysis and Biochemical Characterization. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03523] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Pavel Vanacek
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Eva Sebestova
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Petra Babkova
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Sarka Bidmanova
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Lukas Daniel
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Pavel Dvorak
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Veronika Stepankova
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
- Enantis
Ltd., Biotechnology Incubator INBIT, Kamenice 34, 625 00 Brno, Czech Republic
| | - Radka Chaloupkova
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
- Enantis
Ltd., Biotechnology Incubator INBIT, Kamenice 34, 625 00 Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
- Enantis
Ltd., Biotechnology Incubator INBIT, Kamenice 34, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
3
|
Babkova P, Sebestova E, Brezovsky J, Chaloupkova R, Damborsky J. Ancestral Haloalkane Dehalogenases Show Robustness and Unique Substrate Specificity. Chembiochem 2017; 18:1448-1456. [PMID: 28419658 DOI: 10.1002/cbic.201700197] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Indexed: 11/08/2022]
Abstract
Ancestral sequence reconstruction (ASR) represents a powerful approach for empirical testing structure-function relationships of diverse proteins. We employed ASR to predict sequences of five ancestral haloalkane dehalogenases (HLDs) from the HLD-II subfamily. Genes encoding the inferred ancestral sequences were synthesized and expressed in Escherichia coli, and the resurrected ancestral enzymes (AncHLD1-5) were experimentally characterized. Strikingly, the ancestral HLDs exhibited significantly enhanced thermodynamic stability compared to extant enzymes (ΔTm up to 24 °C), as well as higher specific activities with preference for short multi-substituted halogenated substrates. Moreover, multivariate statistical analysis revealed a shift in the substrate specificity profiles of AncHLD1 and AncHLD2. This is extremely difficult to achieve by rational protein engineering. The study highlights that ASR is an efficient approach for the development of novel biocatalysts and robust templates for directed evolution.
Collapse
Affiliation(s)
- Petra Babkova
- Loschmidt Laboratories, Department of Experimental Biology and, Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Eva Sebestova
- Loschmidt Laboratories, Department of Experimental Biology and, Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories, Department of Experimental Biology and, Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and, Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and, Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| |
Collapse
|
4
|
Liskova V, Stepankova V, Bednar D, Brezovsky J, Prokop Z, Chaloupkova R, Damborsky J. Different Structural Origins of the Enantioselectivity of Haloalkane Dehalogenases toward Linear β-Haloalkanes: Open-Solvated versus Occluded-Desolvated Active Sites. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Veronika Liskova
- Loschmidt Laboratories; Department of Experimental Biology and RECETOX; Faculty of Science; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- International Clinical Research Center; St. Anne's University Hospital; Pekarska 53 656 91 Brno Czech Republic
| | - Veronika Stepankova
- Loschmidt Laboratories; Department of Experimental Biology and RECETOX; Faculty of Science; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- International Clinical Research Center; St. Anne's University Hospital; Pekarska 53 656 91 Brno Czech Republic
- Enantis s.r.o.; Kamenice 34 625 00 Brno Czech Republic
| | - David Bednar
- Loschmidt Laboratories; Department of Experimental Biology and RECETOX; Faculty of Science; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- International Clinical Research Center; St. Anne's University Hospital; Pekarska 53 656 91 Brno Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories; Department of Experimental Biology and RECETOX; Faculty of Science; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- International Clinical Research Center; St. Anne's University Hospital; Pekarska 53 656 91 Brno Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories; Department of Experimental Biology and RECETOX; Faculty of Science; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- International Clinical Research Center; St. Anne's University Hospital; Pekarska 53 656 91 Brno Czech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories; Department of Experimental Biology and RECETOX; Faculty of Science; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- International Clinical Research Center; St. Anne's University Hospital; Pekarska 53 656 91 Brno Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories; Department of Experimental Biology and RECETOX; Faculty of Science; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- International Clinical Research Center; St. Anne's University Hospital; Pekarska 53 656 91 Brno Czech Republic
| |
Collapse
|
5
|
Liskova V, Stepankova V, Bednar D, Brezovsky J, Prokop Z, Chaloupkova R, Damborsky J. Different Structural Origins of the Enantioselectivity of Haloalkane Dehalogenases toward Linear β-Haloalkanes: Open-Solvated versus Occluded-Desolvated Active Sites. Angew Chem Int Ed Engl 2017; 56:4719-4723. [PMID: 28334478 DOI: 10.1002/anie.201611193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/17/2017] [Indexed: 12/24/2022]
Abstract
The enzymatic enantiodiscrimination of linear β-haloalkanes is difficult because the simple structures of the substrates prevent directional interactions. Herein we describe two distinct molecular mechanisms for the enantiodiscrimination of the β-haloalkane 2-bromopentane by haloalkane dehalogenases. Highly enantioselective DbjA has an open, solvent-accessible active site, whereas the engineered enzyme DhaA31 has an occluded and less solvated cavity but shows similar enantioselectivity. The enantioselectivity of DhaA31 arises from steric hindrance imposed by two specific substitutions rather than hydration as in DbjA.
Collapse
Affiliation(s)
- Veronika Liskova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Veronika Stepankova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
- Enantis s.r.o., Kamenice 34, 625 00, Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| |
Collapse
|
6
|
Gross J, Prokop Z, Janssen D, Faber K, Hall M. Regio- and Enantioselective Sequential Dehalogenation of rac-1,3-Dibromobutane by Haloalkane Dehalogenase LinB. Chembiochem 2016; 17:1437-41. [PMID: 27223496 DOI: 10.1002/cbic.201600227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Indexed: 11/06/2022]
Abstract
The hydrolytic dehalogenation of rac-1,3-dibromobutane catalyzed by the haloalkane dehalogenase LinB from Sphingobium japonicum UT26 proceeds in a sequential fashion: initial formation of intermediate haloalcohols followed by a second hydrolytic step to produce the final diol. Detailed investigation of the course of the reaction revealed favored nucleophilic displacement of the sec-halogen in the first hydrolytic event with pronounced R enantioselectivity. The second hydrolysis step proceeded with a regioselectivity switch at the primary position, with preference for the S enantiomer. Because of complex competition between all eight possible reactions, intermediate haloalcohols formed with moderate to good ee ((S)-4-bromobutan-2-ol: up to 87 %). Similarly, (S)-butane-1,3-diol was formed at a maximum ee of 35 % before full hydrolysis furnished the racemic diol product.
Collapse
Affiliation(s)
- Johannes Gross
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Zbyněk Prokop
- Department Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5A13, 625 00, Brno, Czech Republic
| | - Dick Janssen
- Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, NL
| | - Kurt Faber
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Mélanie Hall
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.
| |
Collapse
|
7
|
Zadlo A, Koszelewski D, Borys F, Ostaszewski R. Evaluation of Pseudoenantiomeric Mixed Carbonates as Efficient Fluorogenic Probes for Enantioselectivity Screening. Chembiochem 2015; 17:71-6. [DOI: 10.1002/cbic.201500509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Anna Zadlo
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Dominik Koszelewski
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Filip Borys
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
8
|
|
9
|
Sakow D, Böker B, Brandhorst K, Burghaus O, Bröring M. 10-Heterocorroles: Ring-Contracted Porphyrinoids with Fine-Tuned Aromatic and Metal-Binding Properties. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300757] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Sakow D, Böker B, Brandhorst K, Burghaus O, Bröring M. 10-Heterocorroles: Ring-Contracted Porphyrinoids with Fine-Tuned Aromatic and Metal-Binding Properties. Angew Chem Int Ed Engl 2013; 52:4912-5. [DOI: 10.1002/anie.201300757] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/04/2013] [Indexed: 11/06/2022]
|
11
|
Stepankova V, Khabiri M, Brezovsky J, Pavelka A, Sykora J, Amaro M, Minofar B, Prokop Z, Hof M, Ettrich R, Chaloupkova R, Damborsky J. Expansion of Access Tunnels and Active-Site Cavities Influence Activity of Haloalkane Dehalogenases in Organic Cosolvents. Chembiochem 2013; 14:890-7. [DOI: 10.1002/cbic.201200733] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Indexed: 11/11/2022]
|
12
|
Latifi R, Sainna MA, Rybak-Akimova EV, de Visser SP. Does Hydrogen-Bonding Donation to Manganese(IV)-Oxo and Iron(IV)-Oxo Oxidants Affect the Oxygen-Atom Transfer Ability? A Computational Study. Chemistry 2013; 19:4058-68. [DOI: 10.1002/chem.201202811] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 11/16/2012] [Indexed: 12/21/2022]
|
13
|
Fukuzumi S, Mizuno T, Ojiri T. Catalytic electron-transfer oxygenation of substrates with water as an oxygen source using manganese porphyrins. Chemistry 2012; 18:15794-804. [PMID: 23129350 DOI: 10.1002/chem.201202041] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Indexed: 11/10/2022]
Abstract
Manganese(V)-oxo-porphyrins are produced by the electron-transfer oxidation of manganese-porphyrins with tris(2,2'-bipyridine)ruthenium(III) ([Ru(bpy)(3)](3+); 2 equiv) in acetonitrile (CH(3)CN) containing water. The rate constants of the electron-transfer oxidation of manganese-porphyrins have been determined and evaluated in light of the Marcus theory of electron transfer. Addition of [Ru(bpy)(3)](3+) to a solution of olefins (styrene and cyclohexene) in CH(3)CN containing water in the presence of a catalytic amount of manganese-porphyrins afforded epoxides, diols, and aldehydes efficiently. Epoxides were converted to the corresponding diols by hydrolysis, and were further oxidized to the corresponding aldehydes. The turnover numbers vary significantly depending on the type of manganese-porphyrin used owing to the difference in their oxidation potentials and the steric bulkiness of the ligand. Ethylbenzene was also oxidized to 1-phenylethanol using manganese-porphyrins as electron-transfer catalysts. The oxygen source in the substrate oxygenation was confirmed to be water by using (18)O-labeled water. The rate constant of the reaction of the manganese(V)-oxo species with cyclohexene was determined directly under single-turnover conditions by monitoring the increase in absorbance attributable to the manganese(III) species produced in the reaction with cyclohexene. It has been shown that the rate-determining step in the catalytic electron-transfer oxygenation of cyclohexene is electron transfer from [Ru(bpy)(3)](3+) to the manganese-porphyrins.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency, Suita, Japan.
| | | | | |
Collapse
|
14
|
Reich S, Hoeffken HW, Rosche B, Nestl BM, Hauer B. Crystal structure determination and mutagenesis analysis of the ene reductase NCR. Chembiochem 2012; 13:2400-7. [PMID: 23033175 DOI: 10.1002/cbic.201200404] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Indexed: 11/09/2022]
Abstract
The crystal structure of the "ene" nicotinamide-dependent cyclohexenone reductase (NCR) from Zymomonas mobilis (PDB ID: 4A3U) has been determined in complex with acetate ion, FMN, and nicotinamide, to a resolution of 1.95 Å. To study the activity and enantioselectivity of this enzyme in the bioreduction of activated α,β-unsaturated alkenes, the rational design methods site- and loop-directed mutagenesis were applied. Based on a multiple sequence alignment of various members of the Old Yellow Enzyme family, eight single-residue variants were generated and investigated in asymmetric bioreduction. Furthermore, a structural alignment of various ene reductases predicted four surface loop regions that are located near the entrance of the active site. Four NCR loop variants, derived from loop-swapping experiments with OYE1 from Saccharomyces pastorianus, were analysed for bioreduction. The three enzyme variants, P245Q, D337Y and F314Y, displayed increased activity compared to wild-type NCR towards the set of substrates tested. The active-site mutation Y177A demonstrated a clear influence on the enantioselectivity. The loop-swapping variants retained reduction efficiency, but demonstrated decreased enzyme activity compared with the wild-type NCR ene reductase enzyme.
Collapse
Affiliation(s)
- Sabrina Reich
- Universitaet Stuttgart, Institute of Technical Biochemistry, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
15
|
Man WL, Lam WWY, Kwong HK, Yiu SM, Lau TC. Ligand-Accelerated Activation of Strong CH Bonds of Alkanes by a (Salen)ruthenium(VI)-Nitrido Complex. Angew Chem Int Ed Engl 2012; 51:9101-4. [DOI: 10.1002/anie.201204136] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Indexed: 11/07/2022]
|
16
|
Man WL, Lam WWY, Kwong HK, Yiu SM, Lau TC. Ligand-Accelerated Activation of Strong CH Bonds of Alkanes by a (Salen)ruthenium(VI)-Nitrido Complex. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Lai W, Li C, Chen H, Shaik S. Hydrogen-abstraction reactivity patterns from A to Y: the valence bond way. Angew Chem Int Ed Engl 2012; 51:5556-78. [PMID: 22566272 DOI: 10.1002/anie.201108398] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Indexed: 01/06/2023]
Abstract
"Give us insight, not numbers" was Coulson's admonition to theoretical chemists. This Review shows that the valence bond (VB)-model provides insights and some good numbers for one of the fundamental reactions in nature, the hydrogen-atom transfer (HAT). The VB model is applied to over 50 reactions from the simplest H + H(2) process, to P450 hydroxylations and H-transfers among closed-shell molecules; for each system the barriers are estimated from raw data. The model creates a bridge to the Marcus equation and shows that H-atom abstraction by a closed-shell molecule requires a higher barrier owing to the additional promotion energy needed to prepare the abstractor for H-abstraction. Under certain conditions, a closed-shell abstractor can bypass this penalty through a proton-coupled electron transfer (PCET) mechanism. The VB model links the HAT and PCET mechanisms conceptually and shows the consequences that this linking has for H-abstraction reactivity.
Collapse
Affiliation(s)
- Wenzhen Lai
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | |
Collapse
|
18
|
Lai W, Li C, Chen H, Shaik S. Wasserstoffatomabstraktion von A bis Y: Reaktionsmuster nach der Valenzstrukturtheorie. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108398] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Janardanan D, Usharani D, Shaik S. The Origins of Dramatic Axial Ligand Effects: Closed-Shell MnVO Complexes Use Exchange-Enhanced Open-Shell States to Mediate Efficient H Abstraction Reactions. Angew Chem Int Ed Engl 2012; 51:4421-5. [DOI: 10.1002/anie.201200689] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Indexed: 12/31/2022]
|
20
|
Janardanan D, Usharani D, Shaik S. The Origins of Dramatic Axial Ligand Effects: Closed-Shell MnVO Complexes Use Exchange-Enhanced Open-Shell States to Mediate Efficient H Abstraction Reactions. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Frushicheva MP, Warshel A. Towards quantitative computer-aided studies of enzymatic enantioselectivity: the case of Candida antarctica lipase A. Chembiochem 2011; 13:215-23. [PMID: 22190449 DOI: 10.1002/cbic.201100600] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Indexed: 11/05/2022]
Abstract
The prospect for consistent computer-aided refinement of stereoselective enzymes is explored by simulating the hydrolysis of enantiomers of an α-substituted ester by wild-type and mutant Candida antarctica lipase A, using several strategies. In particular, we focused on the use of the empirical valence bond (EVB) method in a quantitative screening for enantioselectivity, and evaluate both k(cat) and k(cat)/K(M) of the R and S stereoisomers. We found that an extensive sampling is essential for obtaining converging results. This requirement points towards possible problems with approaches that use a limited conformational sampling. However, performing the proper sampling appears to give encouraging results and to offer a powerful tool for the computer-aided design of enantioselective enzymes. We also explore faster strategies for identifying mutations that will help in augmenting directed-evolution experiments, but these approaches require further refinement.
Collapse
Affiliation(s)
- Maria P Frushicheva
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1062, USA
| | | |
Collapse
|
22
|
Lanucara F, Crestoni ME. Biomimetic Oxidation Reactions of a Naked Manganese(V)-Oxo Porphyrin Complex. Chemistry 2011; 17:12092-100. [DOI: 10.1002/chem.201101432] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Indexed: 12/14/2022]
|
23
|
Behrens GA, Hummel A, Padhi SK, Schätzle S, Bornscheuer UT. Discovery and Protein Engineering of Biocatalysts for Organic Synthesis. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100446] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Garcia-Bosch I, Company A, Cady CW, Styring S, Browne WR, Ribas X, Costas M. Evidence for a Precursor Complex in CH Hydrogen Atom Transfer Reactions Mediated by a Manganese(IV) Oxo Complex. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100907] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Garcia-Bosch I, Company A, Cady CW, Styring S, Browne WR, Ribas X, Costas M. Evidence for a Precursor Complex in CH Hydrogen Atom Transfer Reactions Mediated by a Manganese(IV) Oxo Complex. Angew Chem Int Ed Engl 2011; 50:5648-53. [DOI: 10.1002/anie.201100907] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Indexed: 11/10/2022]
|
26
|
de Visser SP, Latifi R, Tahsini L, Nam W. The Axial Ligand Effect on Aliphatic and Aromatic Hydroxylation by Non-heme Iron(IV)-oxo Biomimetic Complexes. Chem Asian J 2010; 6:493-504. [DOI: 10.1002/asia.201000586] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Indexed: 11/05/2022]
|