1
|
Yang J, Xin R, Lehmkuhl S, Korvink JG, Brandner JJ. Development of a fully automated workstation for conducting routine SABRE hyperpolarization. Sci Rep 2024; 14:21022. [PMID: 39251663 PMCID: PMC11384770 DOI: 10.1038/s41598-024-71354-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
SABRE is emerging as a fast, simple and low-cost hyperpolarization method because of its ability to regenerate enhanced NMR signals. Generally, SABRE hyperpolarization has been performed predominantly manually, leading to variations in reproducibility and efficiency. Recent advances in SABRE include the development of automated shuttling systems to address previous inconsistencies. However, the operational complexity of such systems and the challenges of integration with existing workflows hinder their widespread adoption. This work presents a fully automated lab workstation based on a benchtop NMR spectrometer, specifically designed to facilitate SABRE of different nuclei across different polarization fields. We demonstrated the capability of this system through a series of routine SABRE experimental protocols, including consecutive SABRE hyperpolarization with high reproducibility (average standard deviation of 1.03%), optimization polarization of 13C nuclei respect to the polarization transfer field, and measurement of polarization buildup rate or decay time across a wide range of magnetic fields. Furthermore, we have iteratively optimized the durations for pulsed SABRE-SHEATH 13C pyruvate. The constructed SABRE workstation offers full automation, high reproducibility, and functional diversification, making it a practical tool for conducting routine SABRE hyperpolarization experiments. It provides a robust platform for high-throughput and reliable SABRE and X-SABRE hyperpolarization studies.
Collapse
Affiliation(s)
- Jing Yang
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Ruodong Xin
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Sören Lehmkuhl
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Jan G Korvink
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Jürgen J Brandner
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT), 76344, Eggenstein-Leopoldshafen, Germany.
- Karlsruhe Nano Micro Facility (KNMFi), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
2
|
TomHon PM, Han S, Lehmkuhl S, Appelt S, Chekmenev EY, Abolhasani M, Theis T. A Versatile Compact Parahydrogen Membrane Reactor. Chemphyschem 2021; 22:2526-2534. [PMID: 34580981 PMCID: PMC8785414 DOI: 10.1002/cphc.202100667] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 12/29/2022]
Abstract
We introduce a Spin Transfer Automated Reactor (STAR) that produces continuous parahydrogen induced polarization (PHIP), which is stable for hours to days. We use the PHIP variant called signal amplification by reversible exchange (SABRE), which is particularly well suited to produce continuous hyperpolarization. The STAR is operated in conjunction with benchtop (1.1 T) and high field (9.4 T) NMR magnets, highlighting the versatility of this system to operate with any NMR or MRI system. The STAR uses semipermeable membranes to efficiently deliver parahydrogen into solutions at nano to milli Tesla fields, which enables 1 H, 13 C, and 15 N hyperpolarization on a large range of substrates including drugs and metabolites. The unique features of the STAR are leveraged for important applications, including continuous hyperpolarization of metabolites, desirable for examining steady-state metabolism in vivo, as well as for continuous RASER signals suitable for the investigation of new physics.
Collapse
Affiliation(s)
- Patrick M TomHon
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Suyong Han
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Sören Lehmkuhl
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Stephan Appelt
- Central Institute for Engineering, Electronics and Analytics - Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institut für Technische Chemie und Makromolekulare Chemie (ITMC), RWTH Aachen University, 52056, Aachen, Germany
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
- Russian Academy of Sciences, Leninskiy Prospekt 14, 119991, Moscow, Russia
| | - Milad Abolhasani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC, 27606, USA
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
3
|
Ostrowska SJ, Rana A, Utz M. Spatially Resolved Kinetic Model of Parahydrogen Induced Polarisation (PHIP) in a Microfluidic Chip. Chemphyschem 2021; 22:2004-2013. [PMID: 33929791 PMCID: PMC8518753 DOI: 10.1002/cphc.202100135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/23/2021] [Indexed: 01/19/2023]
Abstract
We report a spatially resolved kinetic finite element model of parahydrogen-induced polarisation (PHIP) in a microfluidic chip that was calibrated using on-chip and off-chip NMR data. NMR spectroscopy has great potential as a read-out technique for lab-on-a-chip (LoC) devices, but is often limited by sensitivity. By integrating PHIP with a LoC device, a continuous stream of hyperpolarised material can be produced, and mass sensitivities of pmol s have been achieved. However, the yield and polarisation levels have so far been quite low, and can still be optimised. To facilitate this, a kinetic model of the reaction has been developed, and its rate constants have been calibrated using macroscopic kinetic measurements. The kinetic model was then coupled with a finite element model of the microfluidic chip. The model predicts the concentration of species involved in the reaction as a function of flow rate and position in the device. The results are in quantitative agreement with published experimental data.
Collapse
Affiliation(s)
| | - Aabidah Rana
- School of ChemistryUniversity of SouthamptonSouthamptonUK
| | - Marcel Utz
- School of ChemistryUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
4
|
Eills J, Cavallari E, Kircher R, Di Matteo G, Carrera C, Dagys L, Levitt MH, Ivanov KL, Aime S, Reineri F, Münnemann K, Budker D, Buntkowsky G, Knecht S. Singlet-Contrast Magnetic Resonance Imaging: Unlocking Hyperpolarization with Metabolism*. Angew Chem Int Ed Engl 2021; 60:6791-6798. [PMID: 33340439 PMCID: PMC7986935 DOI: 10.1002/anie.202014933] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Indexed: 11/21/2022]
Abstract
Hyperpolarization-enhanced magnetic resonance imaging can be used to study biomolecular processes in the body, but typically requires nuclei such as 13 C, 15 N, or 129 Xe due to their long spin-polarization lifetimes and the absence of a proton-background signal from water and fat in the images. Here we present a novel type of 1 H imaging, in which hyperpolarized spin order is locked in a nonmagnetic long-lived correlated (singlet) state, and is only liberated for imaging by a specific biochemical reaction. In this work we produce hyperpolarized fumarate via chemical reaction of a precursor molecule with para-enriched hydrogen gas, and the proton singlet order in fumarate is released as antiphase NMR signals by enzymatic conversion to malate in D2 O. Using this model system we show two pulse sequences to rephase the NMR signals for imaging and suppress the background signals from water. The hyperpolarization-enhanced 1 H-imaging modality presented here can allow for hyperpolarized imaging without the need for low-abundance, low-sensitivity heteronuclei.
Collapse
Affiliation(s)
- J. Eills
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung64291DarmstadtGermany
- Johannes Gutenberg University55090MainzGermany
| | - E. Cavallari
- Dept. of Molecular Biotechnology and Health SciencesUniversity of TorinoTorino10126Italy
| | - R. Kircher
- Technical University of Kaiserslautern67663KaiserslauternGermany
| | - G. Di Matteo
- Dept. of Molecular Biotechnology and Health SciencesUniversity of TorinoTorino10126Italy
| | - C. Carrera
- Institute of Biostructures and BioimagingNational Research Council of ItalyTorino10126Italy
| | - L. Dagys
- School of ChemistryUniversity of SouthamptonSouthamptonSO17 1BJVereinigtes Königreich
| | - M. H. Levitt
- School of ChemistryUniversity of SouthamptonSouthamptonSO17 1BJVereinigtes Königreich
| | - K. L. Ivanov
- International Tomography CenterSiberian Branch of the Russian Academy of ScienceNovosibirsk630090Russia
- Novosibirsk State UniversityNovosibirsk630090Russia
| | - S. Aime
- Dept. of Molecular Biotechnology and Health SciencesUniversity of TorinoTorino10126Italy
| | - F. Reineri
- Dept. of Molecular Biotechnology and Health SciencesUniversity of TorinoTorino10126Italy
| | - K. Münnemann
- Technical University of Kaiserslautern67663KaiserslauternGermany
| | - D. Budker
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung64291DarmstadtGermany
- Johannes Gutenberg University55090MainzGermany
| | - G. Buntkowsky
- Eduard-Zintl-Institute for Inorganic Chemistry and Physical, ChemistryTechnical University Darmstadt64287DarmstadtGermany
| | - S. Knecht
- Eduard-Zintl-Institute for Inorganic Chemistry and Physical, ChemistryTechnical University Darmstadt64287DarmstadtGermany
| |
Collapse
|
5
|
Eills J, Cavallari E, Kircher R, Di Matteo G, Carrera C, Dagys L, Levitt MH, Ivanov KL, Aime S, Reineri F, Münnemann K, Budker D, Buntkowsky G, Knecht S. Singulett‐Kontrast‐Magnetresonanztomographie: Freisetzung der Hyperpolarisation durch den Metabolismus**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- J. Eills
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung 64291 Darmstadt Deutschland
- Johannes Gutenberg University 55090 Mainz Deutschland
| | - E. Cavallari
- Dept. of Molecular Biotechnology and Health Sciences University of Torino Torino 10126 Italien
| | - R. Kircher
- Technical University of Kaiserslautern 67663 Kaiserslautern Deutschland
| | - G. Di Matteo
- Dept. of Molecular Biotechnology and Health Sciences University of Torino Torino 10126 Italien
| | - C. Carrera
- Institute of Biostructures and Bioimaging National Research Council of Italy Torino 10126 Italien
| | - L. Dagys
- School of Chemistry University of Southampton Southampton SO17 1BJ Vereinigtes Königreich
| | - M. H. Levitt
- School of Chemistry University of Southampton Southampton SO17 1BJ Vereinigtes Königreich
| | - K. L. Ivanov
- International Tomography Center Siberian Branch of the Russian Academy of Science Novosibirsk 630090 Russland
- Novosibirsk State University Novosibirsk 630090 Russland
| | - S. Aime
- Dept. of Molecular Biotechnology and Health Sciences University of Torino Torino 10126 Italien
| | - F. Reineri
- Dept. of Molecular Biotechnology and Health Sciences University of Torino Torino 10126 Italien
| | - K. Münnemann
- Technical University of Kaiserslautern 67663 Kaiserslautern Deutschland
| | - D. Budker
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung 64291 Darmstadt Deutschland
- Johannes Gutenberg University 55090 Mainz Deutschland
| | - G. Buntkowsky
- Eduard-Zintl-Institute for Inorganic Chemistry and Physical, Chemistry Technical University Darmstadt 64287 Darmstadt Deutschland
| | - S. Knecht
- Eduard-Zintl-Institute for Inorganic Chemistry and Physical, Chemistry Technical University Darmstadt 64287 Darmstadt Deutschland
| |
Collapse
|
6
|
Eills J, Hale W, Sharma M, Rossetto M, Levitt MH, Utz M. High-Resolution Nuclear Magnetic Resonance Spectroscopy with Picomole Sensitivity by Hyperpolarization on a Chip. J Am Chem Soc 2019; 141:9955-9963. [DOI: 10.1021/jacs.9b03507] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- James Eills
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| | - William Hale
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| | - Manvendra Sharma
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| | - Matheus Rossetto
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| | - Malcolm H. Levitt
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| | - Marcel Utz
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| |
Collapse
|
7
|
Kiryutin AS, Sauer G, Tietze D, Brodrecht M, Knecht S, Yurkovskaya AV, Ivanov KL, Avrutina O, Kolmar H, Buntkowsky G. Ultrafast Single‐Scan 2D NMR Spectroscopic Detection of a PHIP‐Hyperpolarized Protease Inhibitor. Chemistry 2019; 25:4025-4030. [DOI: 10.1002/chem.201900079] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Alexey S. Kiryutin
- International Tomography Center Institutskaya 3A Novosibirsk Russia
- Novosibirsk State University Pirogova 2 Novosibirsk 630090 Russia
| | - Grit Sauer
- Eduard-Zintl-Institut für Anorganische und Physikalische ChemieTechnische Universität Darmstadt Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| | - Daniel Tietze
- Eduard-Zintl-Institut für Anorganische und Physikalische ChemieTechnische Universität Darmstadt Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| | - Martin Brodrecht
- Eduard-Zintl-Institut für Anorganische und Physikalische ChemieTechnische Universität Darmstadt Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| | - Stephan Knecht
- Eduard-Zintl-Institut für Anorganische und Physikalische ChemieTechnische Universität Darmstadt Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| | - Alexandra V. Yurkovskaya
- International Tomography Center Institutskaya 3A Novosibirsk Russia
- Novosibirsk State University Pirogova 2 Novosibirsk 630090 Russia
| | - Konstantin L. Ivanov
- International Tomography Center Institutskaya 3A Novosibirsk Russia
- Novosibirsk State University Pirogova 2 Novosibirsk 630090 Russia
| | - Olga Avrutina
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität Darmstadt Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| | - Harald Kolmar
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität Darmstadt Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| | - Gerd Buntkowsky
- Eduard-Zintl-Institut für Anorganische und Physikalische ChemieTechnische Universität Darmstadt Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| |
Collapse
|
8
|
Hövener JB, Pravdivtsev AN, Kidd B, Bowers CR, Glöggler S, Kovtunov KV, Plaumann M, Katz-Brull R, Buckenmaier K, Jerschow A, Reineri F, Theis T, Shchepin RV, Wagner S, Bhattacharya P, Zacharias NM, Chekmenev EY. Parahydrogen-Based Hyperpolarization for Biomedicine. Angew Chem Int Ed Engl 2018; 57:11140-11162. [PMID: 29484795 PMCID: PMC6105405 DOI: 10.1002/anie.201711842] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/14/2018] [Indexed: 12/22/2022]
Abstract
Magnetic resonance (MR) is one of the most versatile and useful physical effects used for human imaging, chemical analysis, and the elucidation of molecular structures. However, its full potential is rarely used, because only a small fraction of the nuclear spin ensemble is polarized, that is, aligned with the applied static magnetic field. Hyperpolarization methods seek other means to increase the polarization and thus the MR signal. A unique source of pure spin order is the entangled singlet spin state of dihydrogen, parahydrogen (pH2 ), which is inherently stable and long-lived. When brought into contact with another molecule, this "spin order on demand" allows the MR signal to be enhanced by several orders of magnitude. Considerable progress has been made in the past decade in the area of pH2 -based hyperpolarization techniques for biomedical applications. It is the goal of this Review to provide a selective overview of these developments, covering the areas of spin physics, catalysis, instrumentation, preparation of the contrast agents, and applications.
Collapse
Affiliation(s)
- Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Bryce Kidd
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - C Russell Bowers
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Stefan Glöggler
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Strasse 3A, 37075, Göttingen, Germany
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Markus Plaumann
- Department of Biometry and Medical Informatics, Otto-von-Guericke University of Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Kai Buckenmaier
- Magnetic resonance center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Alexej Jerschow
- Department of Chemistry, New York University, 100 Washington Sq. East, New York, NY, 10003, USA
| | - Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, Torino, Italy
| | - Thomas Theis
- Department of Chemistry & Department of Physics, Duke University, Durham, NC, 27708, USA
| | - Roman V Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology and Radiological Sciences, 1161 21st Ave South, MCN AA-1105, Nashville, TN, 37027, USA
| | - Shawn Wagner
- Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Niki M Zacharias
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Eduard Y Chekmenev
- Russian Academy of Sciences (RAS), Leninskiy Prospekt 14, Moscow, 119991, Russia
- Department of Chemistry, Karmanos Cancer Institute (KCI) and Integrative Biosciences (Ibio), Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
9
|
Hövener J, Pravdivtsev AN, Kidd B, Bowers CR, Glöggler S, Kovtunov KV, Plaumann M, Katz‐Brull R, Buckenmaier K, Jerschow A, Reineri F, Theis T, Shchepin RV, Wagner S, Bhattacharya P, Zacharias NM, Chekmenev EY. Parawasserstoff‐basierte Hyperpolarisierung für die Biomedizin. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711842] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jan‐Bernd Hövener
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC) Klinik für Radiologie und Neuroradiologie Universitätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität Kiel Am Botanischen Garten 14 24118 Kiel Deutschland
| | - Andrey N. Pravdivtsev
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC) Klinik für Radiologie und Neuroradiologie Universitätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität Kiel Am Botanischen Garten 14 24118 Kiel Deutschland
| | - Bryce Kidd
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
| | - C. Russell Bowers
- Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Stefan Glöggler
- Max Planck-Institut für Biophysikalische Chemie Am Fassberg 11 37077 Göttingen Deutschland
- Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straße 3A 37075 Göttingen Deutschland
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS 630090 Novosibirsk Russland
- Department of Natural Sciences Novosibirsk State University Pirogova St. 2 630090 Novosibirsk Russland
| | - Markus Plaumann
- Institut für Biometrie und Medizinische Informatik Otto-von-Guericke-Universität Magdeburg Leipziger Straße 44 39120 Magdeburg Deutschland
| | - Rachel Katz‐Brull
- Department of Radiology Hadassah-Hebrew University Medical Center Jerusalem Israel
| | - Kai Buckenmaier
- Magnetresonanz-Zentrum Max Planck-Institut für biologische Kybernetik Tübingen Deutschland
| | - Alexej Jerschow
- Department of Chemistry New York University 100 Washington Sq. East New York NY 10003 USA
| | - Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences University of Torino via Nizza 52 Torino Italien
| | - Thomas Theis
- Department of Chemistry & Department of Physics Duke University Durham NC 27708 USA
| | - Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS) Department of Radiology and Radiological Sciences 1161 21st Ave South, MCN AA-1105 Nashville TN 37027 USA
| | - Shawn Wagner
- Biomedical Imaging Research Institute Cedars Sinai Medical Center Los Angeles CA 90048 USA
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Niki M. Zacharias
- Department of Cancer Systems Imaging University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS) Department of Radiology and Radiological Sciences 1161 21st Ave South, MCN AA-1105 Nashville TN 37027 USA
- Russian Academy of Sciences (RAS) Leninskiy Prospekt 14 Moscow 119991 Russland
- Department of Chemistry, Karmanos Cancer Institute (KCI) and Integrative Biosciences (Ibio) Wayne State University Detroit MI 48202 USA
| |
Collapse
|
10
|
Braun M, Häseli S, Rösch F, Piel M, Münnemann K. NMR Hyperpolarization of Established PET Tracers. ChemistrySelect 2018. [DOI: 10.1002/slct.201800364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Manuel Braun
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Sascha Häseli
- Inst. of Nuclear ChemistryJohannes Gutenberg-University Mainz Fritz-Strassmann-Weg 2 55128 Mainz Germany
| | - Frank Rösch
- Inst. of Nuclear ChemistryJohannes Gutenberg-University Mainz Fritz-Strassmann-Weg 2 55128 Mainz Germany
| | - Markus Piel
- Inst. of Nuclear ChemistryJohannes Gutenberg-University Mainz Fritz-Strassmann-Weg 2 55128 Mainz Germany
| | - Kerstin Münnemann
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Dept. of Mechanical and Process Engineering, Lab. of Engineering ThermodynamicsUniversity of Kaiserslautern Erwin-Schrödinger-Straße 44 67663 Kaiserslautern Germany
| |
Collapse
|
11
|
Rayner PJ, Duckett SB. Signal Amplification by Reversible Exchange (SABRE): From Discovery to Diagnosis. Angew Chem Int Ed Engl 2018; 57:6742-6753. [DOI: 10.1002/anie.201710406] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/12/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Peter J. Rayner
- Centre of Hyperpolarisation in Magnetic Resonance, Department of Chemistry; University of York; Heslington YO10 5DD UK
| | - Simon B. Duckett
- Centre of Hyperpolarisation in Magnetic Resonance, Department of Chemistry; University of York; Heslington YO10 5DD UK
| |
Collapse
|
12
|
Rayner PJ, Duckett SB. Signalverstärkung durch reversiblen Austausch (SABRE): von der Entdeckung zur diagnostischen Anwendung. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710406] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Peter J. Rayner
- Centre of Hyperpolarisation in Magnetic Resonance, Department of Chemistry; University of York; Heslington YO10 5DD Großbritannien
| | - Simon B. Duckett
- Centre of Hyperpolarisation in Magnetic Resonance, Department of Chemistry; University of York; Heslington YO10 5DD Großbritannien
| |
Collapse
|
13
|
A Nanoparticle Catalyst for Heterogeneous Phase Para-Hydrogen-Induced Polarization in Water. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Glöggler S, Grunfeld AM, Ertas YN, McCormick J, Wagner S, Schleker PPM, Bouchard LS. A nanoparticle catalyst for heterogeneous phase para-hydrogen-induced polarization in water. Angew Chem Int Ed Engl 2015; 54:2452-6. [PMID: 25565403 DOI: 10.1002/anie.201409027] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/18/2014] [Indexed: 11/06/2022]
Abstract
Para-hydrogen-induced polarization (PHIP) is a technique capable of producing spin polarization at a magnitude far greater than state-of-the-art magnets. A significant application of PHIP is to generate contrast agents for biomedical imaging. Clinically viable and effective contrast agents not only require high levels of polarization but heterogeneous catalysts that can be used in water to eliminate the toxicity impact. Herein, we demonstrate the use of Pt nanoparticles capped with glutathione to induce heterogeneous PHIP in water. The ligand-inhibited surface diffusion on the nanoparticles resulted in a (1) H polarization of P=0.25% for hydroxyethyl propionate, a known contrast agent for magnetic resonance angiography. Transferring the (1) H polarization to a (13) C nucleus using a para-hydrogen polarizer yielded a polarization of 0.013%. The nuclear-spin polarizations achieved in these experiments are the first reported to date involving heterogeneous reactions in water.
Collapse
Affiliation(s)
- Stefan Glöggler
- Department of Chemistry and Biochemistry, University of California at Los Angeles, 607 Charles E Young Drive East, Los Angeles, CA 90095-1569 (USA)
| | | | | | | | | | | | | |
Collapse
|
15
|
Eshuis N, van Weerdenburg BJA, Feiters MC, Rutjes FPJT, Wijmenga SS, Tessari M. Quantitative Trace Analysis of Complex Mixtures Using SABRE Hyperpolarization. Angew Chem Int Ed Engl 2014; 54:1481-4. [DOI: 10.1002/anie.201409795] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 12/24/2022]
|
16
|
Eshuis N, van Weerdenburg BJA, Feiters MC, Rutjes FPJT, Wijmenga SS, Tessari M. Quantitative Trace Analysis of Complex Mixtures Using SABRE Hyperpolarization. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409795] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Sauer G, Nasu D, Tietze D, Gutmann T, Englert S, Avrutina O, Kolmar H, Buntkowsky G. Effective PHIP Labeling of Bioactive Peptides Boosts the Intensity of the NMR Signal. Angew Chem Int Ed Engl 2014; 53:12941-5. [DOI: 10.1002/anie.201404668] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/29/2014] [Indexed: 12/29/2022]
|
18
|
Sauer G, Nasu D, Tietze D, Gutmann T, Englert S, Avrutina O, Kolmar H, Buntkowsky G. Effektive Markierung von bioaktiven Peptiden mit PHIP-Markern zur Steigerung der Empfindlichkeit von NMR-Signalen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Hövener JB, Knecht S, Schwaderlapp N, Hennig J, von Elverfeldt D. Continuous re-hyperpolarization of nuclear spins using parahydrogen: theory and experiment. Chemphyschem 2014; 15:2451-7. [PMID: 25079961 DOI: 10.1002/cphc.201402177] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Indexed: 11/11/2022]
Abstract
The continuous re-hyperpolarization of nuclear spins in the liquid state by means of parahydrogen (para-H2) and chemical exchange at low magnetic fields was recently discovered and offers intriguing perspectives for many varieties of magnetic resonance. In this contribution, we provide a theoretical assessment of this effect and compare the results to experimental data. A distinct distribution of polarization is found, which shares some features with experimental data and, interestingly, does not directly correspond to the loss of the singlet order of para-H2. We derived expressions for the magnetic field and para-H2-substrate interaction time, for which the polarization transfer is maximal. This work sheds light onto the effect of continuous hyperpolarization and elucidates the underlying mechanism, which may facilitate the development of an optimized catalyst. As an application, continuous hyperpolarization may enable highly sensitive nuclear magnetic resonance at very low magnetic fields, for example, for the cost-efficient screening of drugs.
Collapse
Affiliation(s)
- Jan-Bernd Hövener
- German Consortium for Cancer Research (DKTK), Heidelberg, Germany; Medical Physics, Department of Radiology, University Medical Center Freiburg, 79098 Freiburg (Germany); German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
20
|
Shi F, Coffey AM, Waddell KW, Chekmenev EY, Goodson BM. Heterogeneous solution NMR signal amplification by reversible exchange. Angew Chem Int Ed Engl 2014; 53:7495-8. [PMID: 24889730 PMCID: PMC6284233 DOI: 10.1002/anie.201403135] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Indexed: 11/05/2022]
Abstract
A novel variant of an iridium-based organometallic catalyst was synthesized and used to enhance the NMR signals of pyridine in a heterogeneous phase by immobilization on polymer microbead solid supports. Upon administration of parahydrogen (pH2) gas to a methanol mixture containing the HET-SABRE catalyst particles and the pyridine, up to fivefold enhancements were observed in the (1)H NMR spectra after sample transfer to high field (9.4 T). Importantly, enhancements were not due to any residual catalyst molecules in solution, thus supporting the true heterogeneity of the SABRE process. Further significant improvements may be expected by systematic optimization of experimental parameters. Moreover, the heterogeneous catalyst is easy to separate and recycle, thus opening a door to future potential applications varying from spectroscopic studies of catalysis, to imaging metabolites in the body without concern of contamination from expensive and potentially toxic metal catalysts or accompanying organic molecules.
Collapse
Affiliation(s)
- Fan Shi
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Dr., Carbondale, IL 62901 (USA)
| | | | | | | | | |
Collapse
|
21
|
Shi F, Coffey AM, Waddell KW, Chekmenev EY, Goodson BM. Heterogeneous Solution NMR Signal Amplification by Reversible Exchange. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403135] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Buljubasich L, Franzoni MB, Münnemann K. Parahydrogen Induced polarization by homogeneous catalysis: theory and applications. Top Curr Chem (Cham) 2013; 338:33-74. [PMID: 23536243 DOI: 10.1007/128_2013_420] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The alignment of the nuclear spins in parahydrogen can be transferred to other molecules by a homogeneously catalyzed hydrogenation reaction resulting in dramatically enhanced NMR signals. In this chapter we introduce the involved theoretical concepts by two different approaches: the well known, intuitive population approach and the more complex but more complete density operator formalism. Furthermore, we present two interesting applications of PHIP employing homogeneous catalysis. The first demonstrates the feasibility of using PHIP hyperpolarized molecules as contrast agents in (1)H MRI. The contrast arises from the J-coupling induced rephasing of the NMR signal of molecules hyperpolarized via PHIP. It allows for the discrimination of a small amount of hyperpolarized molecules from a large background signal and may open up unprecedented opportunities to use the standard MRI nucleus (1)H for, e.g., metabolic imaging in the future. The second application shows the possibility of continuously producing hyperpolarization via PHIP by employing hollow fiber membranes. The continuous generation of hyperpolarization can overcome the problem of fast relaxation times inherent in all hyperpolarization techniques employed in liquid-state NMR. It allows, for instance, the recording of a reliable 2D spectrum much faster than performing the same experiment with thermally polarized protons. The membrane technique can be straightforwardly extended to produce a continuous flow of a hyperpolarized liquid for MRI enabling important applications in natural sciences and medicine.
Collapse
Affiliation(s)
- Lisandro Buljubasich
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | | | | |
Collapse
|
23
|
Acosta RH, Blümler P, Münnemann K, Spiess HW. Mixture and dissolution of laser polarized noble gases: spectroscopic and imaging applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2012; 66:40-69. [PMID: 22980033 DOI: 10.1016/j.pnmrs.2012.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/20/2012] [Indexed: 06/01/2023]
Affiliation(s)
- Rodolfo H Acosta
- FAMAF, Universidad Nacional de Córdoba, IFEG - CONICET, Córdoba, Argentina
| | | | | | | |
Collapse
|
24
|
Reineri F, Viale A, Ellena S, Boi T, Daniele V, Gobetto R, Aime S. Use of Labile Precursors for the Generation of Hyperpolarized Molecules from Hydrogenation with Parahydrogen and Aqueous-Phase Extraction. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101359] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Reineri F, Viale A, Ellena S, Boi T, Daniele V, Gobetto R, Aime S. Use of Labile Precursors for the Generation of Hyperpolarized Molecules from Hydrogenation with Parahydrogen and Aqueous-Phase Extraction. Angew Chem Int Ed Engl 2011; 50:7350-3. [DOI: 10.1002/anie.201101359] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/13/2011] [Indexed: 11/09/2022]
|
26
|
CNRS Gold Medal: G. Férey / Otto Röhm Award: D. Hinderberger / Tilden Prize: D. A. Leigh / Paul J. Flory Prize: H. W. Spiess. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/anie.201006291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
CNRS-Goldmedaille: G. Férey / Otto-Röhm-Preis: D. Hinderberger / Tilden-Preis: D. A. Leigh / Paul-J.-Flory-Preis: H. W. Spiess. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201006291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|