1
|
Huang L, Su W, Zhu L, Li J, Quan W, Yoon J, Lin W. A Biocompatible Probe for the Detection of Neutrophil Elastase Free from the Interference of Structural Changes and Its Application to Ratiometric Photoacoustic Imaging In Vivo. Angew Chem Int Ed Engl 2023; 62:e202217508. [PMID: 36578174 DOI: 10.1002/anie.202217508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
Neutrophil elastase (NE) plays a key role in chronic inflammation and acute responses to infection and injury. Effective disease interventions thus call for precise identification of NE to aid the clinical treatment of such diseases. However, the detection process suffers from the interference of structural changes of NE. Herein, we introduce a molecular probe with high biocompatibility to overcome the interference, which was achieved by combining theoretical calculations and experimental studies, that permits highly specific and sensitive detection of NE in cells and in vivo. The upregulated NE accumulation was specifically measured in inflammation by ratiometric photoacoustic and near-infrared fluorescence imaging, providing a new method for developing more specific fluorogenic probes for other enzymes.
Collapse
Affiliation(s)
- Ling Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wanting Su
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Lin Zhu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Jiangfeng Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wei Quan
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
2
|
Jiang N, Fan J, Xu F, Peng X, Mu H, Wang J, Xiong X. Ratiometric Fluorescence Imaging of Cellular Polarity: Decrease in Mitochondrial Polarity in Cancer Cells. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410645] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
3
|
Jiang N, Fan J, Xu F, Peng X, Mu H, Wang J, Xiong X. Ratiometric Fluorescence Imaging of Cellular Polarity: Decrease in Mitochondrial Polarity in Cancer Cells. Angew Chem Int Ed Engl 2015; 54:2510-4. [DOI: 10.1002/anie.201410645] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Indexed: 11/11/2022]
|
4
|
Pan X, Liang Z, Li J, Wang S, Kong F, Xu K, Tang B. Active-Site-Matched Fluorescent Probes for Rapid and Direct Detection of Vicinal-Sulfydryl-Containing Peptides/Proteins in Living Cells. Chemistry 2014; 21:2117-22. [DOI: 10.1002/chem.201405349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Indexed: 11/10/2022]
|
5
|
Huang C, Yin Q, Meng J, Zhu W, Yang Y, Qian X, Xu Y. Versatile probes for the selective detection of vicinal-dithiol-containing proteins: design, synthesis, and application in living cells. Chemistry 2013; 19:7739-47. [PMID: 23592554 DOI: 10.1002/chem.201300567] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Indexed: 01/03/2023]
Abstract
Endogenous vicinal-dithiol-containing proteins (VDPs) that have two thiol groups close to each other in space play a significant importance in maintaining the cellular redox microenvironment. Approaches to identify VDPs mainly rely on monitoring the different concentration of monothiol and total thiol groups or on indirect labeling of vicinal thiols by using p-aminophenylarsenoxide (PAO). Our previous work has reported the direct labeling of VDPs with a highly selective receptor PAO analogue, which could realize fluorescence detection of VDPs directly in living cells. Herein, we developed a conjugated approach to expand detectable tags to nitrobenzoxadiazole (NBD), fluorescein, naphthalimide, and biotin for the synthesis of a series of probes. Different linkers have also been introduced toward conjugation of VTA2 with these functional tags. These synthesized flexible probes with various features will offer new tools for the potential identification and visualization of vicinal dithiols existing in different regions of VDPs in living cells. These probes are convenient tools for proteomics studies of various disease-related VDPs and for the discovery of new drug targets.
Collapse
Affiliation(s)
- Chusen Huang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, PR China
| | | | | | | | | | | | | |
Collapse
|
6
|
Guo T, Cui L, Shen J, Wang R, Zhu W, Xu Y, Qian X. A dual-emission and large Stokes shift fluorescence probe for real-time discrimination of ROS/RNS and imaging in live cells. Chem Commun (Camb) 2013; 49:1862-4. [DOI: 10.1039/c3cc38471c] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Wang X, Cui L, Zhou N, Zhu W, Wang R, Qian X, Xu Y. A highly selective and sensitive near-infrared fluorescence probe for arylamine N-acetyltransferase 2 in vitro and in vivo. Chem Sci 2013. [DOI: 10.1039/c3sc51079d] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
8
|
Patra M, Gasser G. Organometallic Compounds: An Opportunity for Chemical Biology? Chembiochem 2012; 13:1232-52. [DOI: 10.1002/cbic.201200159] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Indexed: 12/12/2022]
|