1
|
Zheng Q, Wang T, Chu G, Zuo C, Zhao R, Sui X, Ye L, Yu Y, Chen J, Wu X, Zhang W, Deng H, Shi J, Pan M, Li Y, Liu L. An E1‐Catalyzed Chemoenzymatic Strategy to Isopeptide‐
N
‐Ethylated Deubiquitylase‐Resistant Ubiquitin Probes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qingyun Zheng
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Tian Wang
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Guo‐Chao Chu
- School of Food and Biological Engineering Hefei University of Technology Hefei 230009 China
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Chong Zuo
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Rui Zhao
- School of Food and Biological Engineering Hefei University of Technology Hefei 230009 China
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Xin Sui
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Linzhi Ye
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yuanyuan Yu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jingnan Chen
- School of Food and Biological Engineering Hefei University of Technology Hefei 230009 China
| | - Xiangwei Wu
- School of Food and Biological Engineering Hefei University of Technology Hefei 230009 China
| | - Wenhao Zhang
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 China
| | - Jing Shi
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Man Pan
- Department of Biochemistry and Molecular Biology University of Chicago Chicago IL 60637 USA
| | - Yi‐Ming Li
- School of Food and Biological Engineering Hefei University of Technology Hefei 230009 China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
2
|
Zheng Q, Wang T, Chu GC, Zuo C, Zhao R, Sui X, Ye L, Yu Y, Chen J, Wu X, Zhang W, Deng H, Shi J, Pan M, Li YM, Liu L. An E1-Catalyzed Chemoenzymatic Strategy to Isopeptide-N-Ethylated Deubiquitylase-Resistant Ubiquitin Probes. Angew Chem Int Ed Engl 2020; 59:13496-13501. [PMID: 32346954 DOI: 10.1002/anie.202002974] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/12/2020] [Indexed: 12/22/2022]
Abstract
Triazole-based deubiquitylase (DUB)-resistant ubiquitin (Ub) probes have recently emerged as effective tools for the discovery of Ub chain-specific interactors in proteomic studies, but their structural diversity is limited. A new family of DUB-resistant Ub probes is reported based on isopeptide-N-ethylated dimeric or polymeric Ub chains, which can be efficiently prepared by a one-pot, ubiquitin-activating enzyme (E1)-catalyzed condensation reaction of recombinant Ub precursors to give various homotypic and even branched Ub probes at multi-milligram scale. Proteomic studies using label-free quantitative (LFQ) MS indicated that the isopeptide-N-ethylated Ub probes may complement the triazole-based probes in the study of Ub interactome. Our study highlights the utility of modern protein synthetic chemistry to develop structurally and new families of tool molecules needed for proteomic studies.
Collapse
Affiliation(s)
- Qingyun Zheng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tian Wang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Guo-Chao Chu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.,Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Chong Zuo
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Rui Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.,Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xin Sui
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Linzhi Ye
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuanyuan Yu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jingnan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiangwei Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wenhao Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jing Shi
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Man Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Yi-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Zhao X, Lutz J, Höllmüller E, Scheffner M, Marx A, Stengel F. Identification of Proteins Interacting with Ubiquitin Chains. Angew Chem Int Ed Engl 2017; 56:15764-15768. [DOI: 10.1002/anie.201705898] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/01/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaohui Zhao
- Departments of Chemistry and Biology; Konstanz Research School Chemical Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Joachim Lutz
- Departments of Chemistry and Biology; Konstanz Research School Chemical Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Eva Höllmüller
- Departments of Chemistry and Biology; Konstanz Research School Chemical Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Martin Scheffner
- Departments of Chemistry and Biology; Konstanz Research School Chemical Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Andreas Marx
- Departments of Chemistry and Biology; Konstanz Research School Chemical Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Florian Stengel
- Departments of Chemistry and Biology; Konstanz Research School Chemical Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| |
Collapse
|
4
|
Zhao X, Lutz J, Höllmüller E, Scheffner M, Marx A, Stengel F. Identifizierung von Interaktoren von Ubiquitinketten. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaohui Zhao
- Fachbereich Chemie und Biologie; Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Joachim Lutz
- Fachbereich Chemie und Biologie; Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Eva Höllmüller
- Fachbereich Chemie und Biologie; Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Martin Scheffner
- Fachbereich Chemie und Biologie; Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Andreas Marx
- Fachbereich Chemie und Biologie; Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Florian Stengel
- Fachbereich Chemie und Biologie; Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| |
Collapse
|
5
|
Stanley M, Virdee S. Genetically Directed Production of Recombinant, Isosteric and Nonhydrolysable Ubiquitin Conjugates. Chembiochem 2016; 17:1472-80. [PMID: 27197715 PMCID: PMC5094518 DOI: 10.1002/cbic.201600138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 12/11/2022]
Abstract
We describe the genetically directed incorporation of aminooxy functionality into recombinant proteins by using a mutant Methanosarcina barkeri pyrrolysyl‐tRNA synthetase/tRNACUA pair. This allows the general production of nonhydrolysable ubiquitin conjugates of recombinant origin by bioorthogonal oxime ligation. This was exemplified by the preparation of nonhydrolysable versions of diubiquitin, polymeric ubiquitin chains and ubiquitylated SUMO. The conjugates exhibited unrivalled isostery with the native isopeptide bond, as inferred from structural and biophysical characterisation. Furthermore, the conjugates functioned as nanomolar inhibitors of deubiquitylating enzymes and were recognised by linkage‐specific antibodies. This technology should provide a versatile platform for the development of powerful tools for studying deubiquitylating enzymes and for elucidating the cellular roles of diverse polyubiquitin linkages.
Collapse
Affiliation(s)
- Mathew Stanley
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Satpal Virdee
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK.
| |
Collapse
|
6
|
Yamada YMA, Ohno A, Sato T, Uozumi Y. Instantaneous Click Chemistry by a Copper-Containing Polymeric-Membrane-Installed Microflow Catalytic Reactor. Chemistry 2015; 21:17269-73. [DOI: 10.1002/chem.201503178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Indexed: 11/09/2022]
|
7
|
Sommer S, Ritterhoff T, Melchior F, Mootz HD. A stable chemical SUMO1-Ubc9 conjugate specifically binds as a thioester mimic to the RanBP2-E3 ligase complex. Chembiochem 2015; 16:1183-9. [PMID: 25917782 DOI: 10.1002/cbic.201500011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Indexed: 01/20/2023]
Abstract
Ubiquitin and ubiquitin-like (Ubl) modifiers such as SUMO are conjugated to substrate proteins by E1, E2, and E3 enzymes. In the presence of an E3 ligase, the E2∼Ubl thioester intermediate becomes highly activated and is prone to chemical decomposition, thus making biochemical and structural studies difficult. Here we explored a stable chemical conjugate of the E2 enzyme from the SUMO pathway, Ubc9, with its modifier SUMO1 as a structural analogue of the Ubc9∼SUMO1 thioester intermediate, by introducing a triazole linkage by biorthogonal click chemistry. The chemical conjugate proved stable against proteolytic cleavage, in contrast to a Ubc9-SUMO1 isopeptide analogue obtained by auto-SUMOylation. Triazole-linked Ubc9-SUMO1 bound specifically to the preassembled E3 ligase complex RanBP2/RanGAP1*SUMO1/Ubc9, thus suggesting that it is a suitable thioester mimic. We anticipate interesting prospects for its use as a research tool to study protein complexes involving E2 and E3 enzymes.
Collapse
Affiliation(s)
- Stefanie Sommer
- Institute of Biochemistry, University of Muenster, Wilhelm-Klemm-Strasse 2, 48149 Münster (Germany)
| | - Tobias Ritterhoff
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg (Germany)
| | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg (Germany).
| | - Henning D Mootz
- Institute of Biochemistry, University of Muenster, Wilhelm-Klemm-Strasse 2, 48149 Münster (Germany).
| |
Collapse
|
8
|
Schneider T, Schneider D, Rösner D, Malhotra S, Mortensen F, Mayer TU, Scheffner M, Marx A. Analyse des Ubiquitincodes durch proteasebeständige Ubiquitinketten mit definierter Verknüpfung. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407192] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Schneider T, Schneider D, Rösner D, Malhotra S, Mortensen F, Mayer TU, Scheffner M, Marx A. Dissecting ubiquitin signaling with linkage-defined and protease resistant ubiquitin chains. Angew Chem Int Ed Engl 2014; 53:12925-9. [PMID: 25196034 DOI: 10.1002/anie.201407192] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Indexed: 01/08/2023]
Abstract
Ubiquitylation is a complex posttranslational protein modification and deregulation of this pathway has been associated with different human disorders. Ubiquitylation comes in different flavors: Besides mono-ubiquitylation, ubiquitin chains of various topologies are formed on substrate proteins. The fate of ubiquitylated proteins is determined by the linkage-type of the attached ubiquitin chains, however, the underlying mechanism is poorly characterized. Herein, we describe a new method based on codon expansion and click-chemistry-based polymerization to generate linkage-defined ubiquitin chains that are resistant to ubiquitin-specific proteases and adopt native-like functions. The potential of these artificial chains for analyzing ubiquitin signaling is demonstrated by linkage-specific effects on cell-cycle progression.
Collapse
Affiliation(s)
- Tatjana Schneider
- Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz (Germany)
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abeywardana T, Pratt MR. Using Chemistry to Investigate the Molecular Consequences of Protein Ubiquitylation. Chembiochem 2014; 15:1547-54. [DOI: 10.1002/cbic.201402117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Indexed: 12/21/2022]
|
11
|
Yang Y, Zhang CY. Simultaneous Measurement of SUMOylation using SNAP/CLIP-Tag-Mediated Translation at the Single-Molecule Level. Angew Chem Int Ed Engl 2012; 52:691-4. [DOI: 10.1002/anie.201206695] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Indexed: 12/28/2022]
|
12
|
Yang Y, Zhang CY. Simultaneous Measurement of SUMOylation using SNAP/CLIP-Tag-Mediated Translation at the Single-Molecule Level. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
|
14
|
Spasser L, Brik A. Chemistry and Biology of the Ubiquitin Signal. Angew Chem Int Ed Engl 2012; 51:6840-62. [DOI: 10.1002/anie.201200020] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Indexed: 01/07/2023]
|
15
|
Tran LD, Daugulis O. Nonnatural amino acid synthesis by using carbon-hydrogen bond functionalization methodology. Angew Chem Int Ed Engl 2012; 51:5188-91. [PMID: 22499265 PMCID: PMC3375132 DOI: 10.1002/anie.201200731] [Citation(s) in RCA: 329] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Ly Dieu Tran
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA, Fax: (+1)713-743-2709
| | - Olafs Daugulis
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA, Fax: (+1)713-743-2709
| |
Collapse
|
16
|
Tran LD, Daugulis O. Nonnatural Amino Acid Synthesis by Using Carbon-Hydrogen Bond Functionalization Methodology. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200731] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Hudak JE, Barfield RM, de Hart GW, Grob P, Nogales E, Bertozzi CR, Rabuka D. Synthesis of Heterobifunctional Protein Fusions Using Copper-Free Click Chemistry and the Aldehyde Tag. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108130] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Hudak JE, Barfield RM, de Hart GW, Grob P, Nogales E, Bertozzi CR, Rabuka D. Synthesis of heterobifunctional protein fusions using copper-free click chemistry and the aldehyde tag. Angew Chem Int Ed Engl 2012; 51:4161-5. [PMID: 22407566 PMCID: PMC3379715 DOI: 10.1002/anie.201108130] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Indexed: 01/16/2023]
Affiliation(s)
- Jason E Hudak
- Department of Chemistry, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Bavikar SN, Spasser L, Haj-Yahya M, Karthikeyan SV, Moyal T, Ajish Kumar KS, Brik A. Chemical Synthesis of Ubiquitinated Peptides with Varying Lengths and Types of Ubiquitin Chains to Explore the Activity of Deubiquitinases. Angew Chem Int Ed Engl 2011; 51:758-63. [DOI: 10.1002/anie.201106430] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 10/12/2011] [Indexed: 01/27/2023]
|
20
|
Bavikar SN, Spasser L, Haj-Yahya M, Karthikeyan SV, Moyal T, Ajish Kumar KS, Brik A. Chemical Synthesis of Ubiquitinated Peptides with Varying Lengths and Types of Ubiquitin Chains to Explore the Activity of Deubiquitinases. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201106430] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Eger S, Castrec B, Hübscher U, Scheffner M, Rubini M, Marx A. Generation of a Mono-ubiquitinated PCNA Mimic by Click Chemistry. Chembiochem 2011; 12:2807-12. [DOI: 10.1002/cbic.201100444] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Indexed: 11/10/2022]
|