1
|
Stucki A, Vallapurackal J, Ward TR, Dittrich PS. Droplet Microfluidics and Directed Evolution of Enzymes: An Intertwined Journey. Angew Chem Int Ed Engl 2021; 60:24368-24387. [PMID: 33539653 PMCID: PMC8596820 DOI: 10.1002/anie.202016154] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Evolution is essential to the generation of complexity and ultimately life. It relies on the propagation of the properties, traits, and characteristics that allow an organism to survive in a challenging environment. It is evolution that shaped our world over about four billion years by slow and iterative adaptation. While natural evolution based on selection is slow and gradual, directed evolution allows the fast and streamlined optimization of a phenotype under selective conditions. The potential of directed evolution for the discovery and optimization of enzymes is mostly limited by the throughput of the tools and methods available for screening. Over the past twenty years, versatile tools based on droplet microfluidics have been developed to address the need for higher throughput. In this Review, we provide a chronological overview of the intertwined development of microfluidics droplet-based compartmentalization methods and in vivo directed evolution of enzymes.
Collapse
Affiliation(s)
- Ariane Stucki
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Jaicy Vallapurackal
- Department of ChemistryUniversity of BaselMattenstrasse 24aCH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Thomas R. Ward
- Department of ChemistryUniversity of BaselMattenstrasse 24aCH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| |
Collapse
|
2
|
Stucki A, Vallapurackal J, Ward TR, Dittrich PS. Droplet Microfluidics and Directed Evolution of Enzymes: An Intertwined Journey. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ariane Stucki
- Department of Biosystems Science and Engineering ETH Zurich Mattenstrasse 26 CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Jaicy Vallapurackal
- Department of Chemistry University of Basel Mattenstrasse 24a CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Thomas R. Ward
- Department of Chemistry University of Basel Mattenstrasse 24a CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering ETH Zurich Mattenstrasse 26 CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| |
Collapse
|
3
|
Xiao M, Zou K, Li L, Wang L, Tian Y, Fan C, Pei H. Stochastic DNA Walkers in Droplets for Super‐Multiplexed Bacterial Phenotype Detection. Angew Chem Int Ed Engl 2019; 58:15448-15454. [DOI: 10.1002/anie.201906438] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/12/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Kui Zou
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Lihua Wang
- Department School of Chemistry and Chemical Engineering, and Institute of Molecular MedicineRenji HospitalSchool of MedicineShanghai Jiao Tong University Shanghai 200240 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Chunhai Fan
- Department School of Chemistry and Chemical Engineering, and Institute of Molecular MedicineRenji HospitalSchool of MedicineShanghai Jiao Tong University Shanghai 200240 China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| |
Collapse
|
4
|
Xiao M, Zou K, Li L, Wang L, Tian Y, Fan C, Pei H. Stochastic DNA Walkers in Droplets for Super‐Multiplexed Bacterial Phenotype Detection. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906438] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Kui Zou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Lihua Wang
- Department School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Chunhai Fan
- Department School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| |
Collapse
|
5
|
Qin Y, Wu L, Schneider T, Yen GS, Wang J, Xu S, Li M, Paguirigan AL, Smith JL, Radich JP, Anand RK, Chiu DT. A Self-Digitization Dielectrophoretic (SD-DEP) Chip for High-Efficiency Single-Cell Capture, On-Demand Compartmentalization, and Downstream Nucleic Acid Analysis. Angew Chem Int Ed Engl 2018; 57:11378-11383. [PMID: 30003660 DOI: 10.1002/anie.201807314] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 11/11/2022]
Abstract
The design and fabrication of a self-digitization dielectrophoretic (SD-DEP) chip with simple components for single-cell manipulation and downstream nucleic acid analysis is presented. The device employed the traditional DEP and insulator DEP to create the local electric field that is tailored to approximately the size of single cells, enabling highly efficient single-cell capture. The multistep procedures of cell manipulation, compartmentalization, lysis, and analysis were performed in the integrated microdevice, consuming minimal reagents, minimizing contamination, decreasing lysate dilution, and increasing assay sensitivity. The platform developed here could be a promising and powerful tool in single-cell research for precise medicine.
Collapse
Affiliation(s)
- Yuling Qin
- Department of Chemistry, University of Washington, Seattle, Washington, 98195, USA
| | - Li Wu
- Department of Chemistry, University of Washington, Seattle, Washington, 98195, USA
| | - Thomas Schneider
- Department of Chemistry, University of Washington, Seattle, Washington, 98195, USA
| | - Gloria S Yen
- Department of Chemistry, University of Washington, Seattle, Washington, 98195, USA
| | - Jiasi Wang
- Department of Chemistry, University of Washington, Seattle, Washington, 98195, USA
| | - Shihan Xu
- Department of Chemistry, University of Washington, Seattle, Washington, 98195, USA
| | - Min Li
- Department of Chemistry, Iowa State University, Ames, Iowa, 50010, USA
| | - Amy L Paguirigan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, USA)
| | - Jordan L Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, USA)
| | - Jerald P Radich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, USA)
| | - Robbyn K Anand
- Department of Chemistry, Iowa State University, Ames, Iowa, 50010, USA
| | - Daniel T Chiu
- Department of Chemistry, University of Washington, Seattle, Washington, 98195, USA
| |
Collapse
|
6
|
Qin Y, Wu L, Schneider T, Yen GS, Wang J, Xu S, Li M, Paguirigan AL, Smith JL, Radich JP, Anand RK, Chiu DT. A Self-Digitization Dielectrophoretic (SD-DEP) Chip for High-Efficiency Single-Cell Capture, On-Demand Compartmentalization, and Downstream Nucleic Acid Analysis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuling Qin
- Department of Chemistry; University of Washington; Seattle Washington 98195 USA
| | - Li Wu
- Department of Chemistry; University of Washington; Seattle Washington 98195 USA
| | - Thomas Schneider
- Department of Chemistry; University of Washington; Seattle Washington 98195 USA
| | - Gloria S. Yen
- Department of Chemistry; University of Washington; Seattle Washington 98195 USA
| | - Jiasi Wang
- Department of Chemistry; University of Washington; Seattle Washington 98195 USA
| | - Shihan Xu
- Department of Chemistry; University of Washington; Seattle Washington 98195 USA
| | - Min Li
- Department of Chemistry; Iowa State University; Ames Iowa 50010 USA
| | - Amy L. Paguirigan
- Clinical Research Division; Fred Hutchinson Cancer Research Center; Seattle Washington 98109 USA)
| | - Jordan L. Smith
- Clinical Research Division; Fred Hutchinson Cancer Research Center; Seattle Washington 98109 USA)
| | - Jerald P. Radich
- Clinical Research Division; Fred Hutchinson Cancer Research Center; Seattle Washington 98109 USA)
| | - Robbyn K. Anand
- Department of Chemistry; Iowa State University; Ames Iowa 50010 USA
| | - Daniel T. Chiu
- Department of Chemistry; University of Washington; Seattle Washington 98195 USA
| |
Collapse
|
7
|
Recent Advances of Microfluidics Technologies in the Field of Medicinal Chemistry. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1016/bs.armc.2017.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Sun Y, Huang X, Soh S. Solid-to-Liquid Charge Transfer for Generating Droplets with Tunable Charge. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yajuan Sun
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Xu Huang
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Siowling Soh
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
9
|
Sun Y, Huang X, Soh S. Solid-to-Liquid Charge Transfer for Generating Droplets with Tunable Charge. Angew Chem Int Ed Engl 2016; 55:9956-60. [DOI: 10.1002/anie.201604378] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Yajuan Sun
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Xu Huang
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Siowling Soh
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
10
|
Benz C, Boomhoff M, Appun J, Schneider C, Belder D. Chip-Based Free-Flow Electrophoresis with Integrated Nanospray Mass-Spectrometry. Angew Chem Int Ed Engl 2015; 54:2766-70. [DOI: 10.1002/anie.201409663] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/12/2014] [Indexed: 11/07/2022]
|
11
|
Benz C, Boomhoff M, Appun J, Schneider C, Belder D. Chip-basierte Freiflusselektrophorese mit integrierter Nanospray-Massenspektrometrie-Kopplung. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Rodrigues T, Schneider P, Schneider G. Accessing New Chemical Entities through Microfluidic Systems. Angew Chem Int Ed Engl 2014; 53:5750-8. [DOI: 10.1002/anie.201400988] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Indexed: 11/10/2022]
|
13
|
Rodrigues T, Schneider P, Schneider G. Neue chemische Strukturen durch Mikrofluidiksysteme. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400988] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Gasilova N, Yu Q, Qiao L, Girault HH. On-Chip Spyhole Mass Spectrometry for Droplet-Based Microfluidics. Angew Chem Int Ed Engl 2014; 53:4408-12. [DOI: 10.1002/anie.201310795] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Indexed: 12/23/2022]
|
15
|
Gasilova N, Yu Q, Qiao L, Girault HH. On-Chip Spyhole Mass Spectrometry for Droplet-Based Microfluidics. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310795] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Zhang Y, Zhang W, Qin L. Mesenchymal-mode migration assay and antimetastatic drug screening with high-throughput microfluidic channel networks. Angew Chem Int Ed Engl 2014; 53:2344-8. [PMID: 24478127 PMCID: PMC3973404 DOI: 10.1002/anie.201309885] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Indexed: 11/10/2022]
Abstract
Increasing evidence shows that activated mesenchymal migration is a key process of the metastatic cascade. Cancer cells usually gain such migratory capability through an epithelial-to-mesenchymal transition. Herein we present a high-throughput microfluidic device with 3120 microchambers to specifically monitor mesenchymal migration. Through imaging of the whole chip and statistical analysis, we can evaluate the two key factors of velocity and percentage related to cell migratory capacity at different cell densities in culture. We also used the device to screen antimetastatic drugs for their inhibition of mesenchymal migration and prevention of metastatic malignancy. This device will provide an excellent platform for biologists to gain a better understanding of cancer metastasis.
Collapse
Affiliation(s)
- Yuanqing Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave. Houston, TX, United States 77030
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065
| | - Weijia Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave. Houston, TX, United States 77030
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave. Houston, TX, United States 77030
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065
| |
Collapse
|
17
|
Zhang Y, Zhang W, Qin L. Mesenchymal-Mode Migration Assay and Antimetastatic Drug Screening with High-Throughput Microfluidic Channel Networks. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309885] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|