1
|
Seong HG, Chen Z, Emrick T, Russell TP. Reconfiguration and Reorganization of Bottlebrush Polymer Surfactants. Angew Chem Int Ed Engl 2022; 61:e202200530. [PMID: 35224828 DOI: 10.1002/anie.202200530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Indexed: 02/02/2023]
Abstract
Bottlebrush random copolymers (BRCPs), having randomly distributed hydrophilic and hydrophobic side chains, are shown to reconfigure into hydrophilic-rich and hydrophobic-rich conformations at liquid-liquid interfaces to reduce interfacial energy. Both the degree of polymerization (NBB ) and extent of grafting in these BRCPs were found to impact surface coverage and assembly kinetics. The time-dependence of the interfacial tension is described as the sum of two exponential relaxation functions characterizing BRCP diffusion, interfacial adsorption, and reorganization. Interfacial tension (γ) and fluorescence recovery after photobleaching (FRAP) results showed that higher molecular weight BRCPs require longer time to adsorb to the water-oil interface, but less time for interfacial reorganization. Overall, this work describes fundamental principles of BRCP assembly at liquid-liquid interfaces, with implications pertaining to polymer design with enhanced understanding of emulsification, adhesion, and related properties in fluids and at interfaces.
Collapse
Affiliation(s)
- Hong-Gyu Seong
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Zhan Chen
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Todd Emrick
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Thomas P Russell
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Seong H, Chen Z, Emrick T, Russell TP. Reconfiguration and Reorganization of Bottlebrush Polymer Surfactants. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hong‐Gyu Seong
- Polymer Science and Engineering Department Conte Center for Polymer Research University of Massachusetts 120 Governors Drive Amherst MA 01003 USA
| | - Zhan Chen
- Polymer Science and Engineering Department Conte Center for Polymer Research University of Massachusetts 120 Governors Drive Amherst MA 01003 USA
| | - Todd Emrick
- Polymer Science and Engineering Department Conte Center for Polymer Research University of Massachusetts 120 Governors Drive Amherst MA 01003 USA
| | - Thomas P. Russell
- Polymer Science and Engineering Department Conte Center for Polymer Research University of Massachusetts 120 Governors Drive Amherst MA 01003 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| |
Collapse
|
3
|
Zheng Y, Wang Z, Li Z, Liu H, Wei J, Peng C, Zhou Y, Li J, Fu Q, Tan H, Ding M. Ordered Conformation‐Regulated Vesicular Membrane Permeability. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yi Zheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Zuojie Wang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Zifen Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Hang Liu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Jing Wei
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Chuan Peng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Yeqiang Zhou
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Jianshu Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Qiang Fu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Hong Tan
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Mingming Ding
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| |
Collapse
|
4
|
Zheng Y, Wang Z, Li Z, Liu H, Wei J, Peng C, Zhou Y, Li J, Fu Q, Tan H, Ding M. Ordered Conformation-Regulated Vesicular Membrane Permeability. Angew Chem Int Ed Engl 2021; 60:22529-22536. [PMID: 34390299 DOI: 10.1002/anie.202109637] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 11/07/2022]
Abstract
In nature, the folding and conformation of proteins can control the cell or organelle membrane permeability and regulate the life activities. Here we report the first example of synthetic polypeptide vesicles that regulate their permeability via ordered transition of secondary conformations, in a manner similar to biological systems. The polymersomes undergo a β-sheet to α-helix transition in response to reactive oxygen species (ROS), leading to wall thinning without loss of vesicular integrity. The change of membrane structure increases the vesicular permeability and enables specific transport of payloads with different molecular weights.The change of membrane structure increases the vesicular permeability. As a proof-of-concept, the polymersomes encapsulating enzymes could serve as nanoreactors and carries for glucose-stimulated insulin secretion in vivo inspired by human glucokinase, resulting in safe and effective treatment of type 1 diabetes mellitus in mouse models. This study will help understand the biology of biomembranes and facilitate the engineering of nanoplatforms for biomimicry, biosensing, and controlled delivery applications.
Collapse
Affiliation(s)
- Yi Zheng
- Sichuan University, College of Polymer Science and Engineering, 5805, CHINA
| | - Zuojie Wang
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Zifen Li
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Hang Liu
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Jing Wei
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Chuan Peng
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Yeqiang Zhou
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Jianshu Li
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Qiang Fu
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Hong Tan
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Mingming Ding
- Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, 610065, Chengdu, CHINA
| |
Collapse
|
5
|
Xu B, Qian H, Zhang L, Lin S. Branched Aggregates with Tunable Morphology via Hierarchical Self‐Assembly of Azobenzene‐Derived Molecular Double Brushes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Binbin Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Hongyu Qian
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Ling Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
6
|
Xu B, Qian H, Zhang L, Lin S. Branched Aggregates with Tunable Morphology via Hierarchical Self-Assembly of Azobenzene-Derived Molecular Double Brushes. Angew Chem Int Ed Engl 2021; 60:17707-17713. [PMID: 34075671 DOI: 10.1002/anie.202106321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 11/10/2022]
Abstract
Hierarchical self-assembly is one of the most effective approaches to fabricate nature-inspired materials with subtle nanostructures. We report a distinct hierarchical self-assembly process of molecular double brushes (MDBs) with each graft site carrying a poly(azobenzene-acrylate) (PAzo) chain and a poly(ethylene oxide) (PEO) chain. Asymmetric tapered worm (ATW) nanostructures with chain-end reactivity assembling from the azobenzene-derived MDBs serve as primary subunits to prepare branched supermicelles by increasing water content (Cw ) in THF/water. Various natural Antedon-shaped multiarm worm-like aggregates (MWAs) can be created via the particle-particle connection of ATWs. Intriguingly, the azobenzene moieties undergo trans-cis isomerization upon UV irradiation and further promote a morphology evolution of MWAs. Multiscale supermicelles comprised of starfish shapes with differing central body and arm morphologies (e.g., compare to the biological specimens Luidia ciliaris and Crossaster papposus) were prepared by manipulating irradiation time.
Collapse
Affiliation(s)
- Binbin Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongyu Qian
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ling Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
7
|
Awasthi AA, Pandey SP, Singh PK. Supramolecular Control on the Optical Properties of a Dye-Polyelectrolyte Assembly. Chemphyschem 2021; 22:975-984. [PMID: 33759328 DOI: 10.1002/cphc.202100092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Indexed: 12/16/2022]
Abstract
Control of fluorescent molecular assemblies is an exciting area of research with large potential for various important applications, such as, fluorescence sensing/probing, cell imaging and monitoring drug-delivery. In the present contribution, we have demonstrated control on the extent of aggregation of a dye-polyelectrolyte assembly using a macrocyclic host molecule, sulfobutylether-β-cyclodextrin (SBE-β-CD). Initially, a cationic molecular rotor based organic dye, Auramine-O (AuO), undergoes aggregation in the presence of an anionic polyelectrolyte, polystyrene sulfonate (PSS), and displays a broad intense new emission band along with large variation in its absorption features and excited-state lifetime. A manipulation of the monomer-aggregate equilibrium of the dye-polyelectrolyte assembly has been achieved by introducing a cyclodextrin based supramolecular host, SBE-β-CD, which leads to relocation of AuO molecules from polyelectrolyte (PSS) to supramolecular host cavity, owing to the formation of a host-guest complex between AuO and SBE-β-CD. A reversible control on this manipulation of monomer-aggregate equilibrium is further achieved by introducing a competitive guest for the host cavity i. e., 1-Adamantanol. Thus, we have demonstrated an interesting control on the dye-polyelectrolyte aggregate assembly using a supramolecular host molecule which open up exciting possibilities to construct responsive materials using a repertoire of various host-specific guest molecules.
Collapse
Affiliation(s)
- Ankur A Awasthi
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085, India
| | - Shrishti P Pandey
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai, 410206, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai-400 094, India
| |
Collapse
|
8
|
Tao S, Cheng J, Su G, Li D, Shen Z, Tao F, You T, Hu J. Breathing Micelles for Combinatorial Treatment of Rheumatoid Arthritis. Angew Chem Int Ed Engl 2020; 59:21864-21869. [PMID: 32902083 DOI: 10.1002/anie.202010009] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/03/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Siyue Tao
- The First Affiliated Hospital of USTC Division of Life Science and Medicine University of Science and Technology of China Hefei 230001 Anhui China
| | - Jian Cheng
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Science at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 Anhui China
| | - Gai Su
- The First Affiliated Hospital of USTC Division of Life Science and Medicine University of Science and Technology of China Hefei 230001 Anhui China
| | - Dan Li
- The First Affiliated Hospital of USTC Division of Life Science and Medicine University of Science and Technology of China Hefei 230001 Anhui China
| | - Zhiqiang Shen
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Science at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 Anhui China
| | - Fenghua Tao
- Department of Orthopedics Renmin Hospital of Wuhan University Wuhan 430060 Hubei China
| | - Tao You
- The First Affiliated Hospital of USTC Division of Life Science and Medicine University of Science and Technology of China Hefei 230001 Anhui China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Science at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 Anhui China
| |
Collapse
|
9
|
Tao S, Cheng J, Su G, Li D, Shen Z, Tao F, You T, Hu J. Breathing Micelles for Combinatorial Treatment of Rheumatoid Arthritis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Siyue Tao
- The First Affiliated Hospital of USTC Division of Life Science and Medicine University of Science and Technology of China Hefei 230001 Anhui China
| | - Jian Cheng
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Science at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 Anhui China
| | - Gai Su
- The First Affiliated Hospital of USTC Division of Life Science and Medicine University of Science and Technology of China Hefei 230001 Anhui China
| | - Dan Li
- The First Affiliated Hospital of USTC Division of Life Science and Medicine University of Science and Technology of China Hefei 230001 Anhui China
| | - Zhiqiang Shen
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Science at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 Anhui China
| | - Fenghua Tao
- Department of Orthopedics Renmin Hospital of Wuhan University Wuhan 430060 Hubei China
| | - Tao You
- The First Affiliated Hospital of USTC Division of Life Science and Medicine University of Science and Technology of China Hefei 230001 Anhui China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Science at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 Anhui China
| |
Collapse
|
10
|
Lin W, Zhou X, Cai J, Chen K, He X, Kong X, Li H, Wang C. Anion-Functionalized Pillararenes for Efficient Sulfur Dioxide Capture: Significant Effect of the Anion and the Cavity. Chemistry 2017; 23:14143-14148. [DOI: 10.1002/chem.201703007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Wenjun Lin
- Department of Chemistry; ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 P.R. China
| | - Xiuyuan Zhou
- Department of Chemistry; ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 P.R. China
| | - Jingsong Cai
- Department of Chemistry; ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 P.R. China
| | - Kaihong Chen
- Department of Chemistry; ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 P.R. China
| | - Xi He
- Department of Chemistry; ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 P.R. China
| | - Xueqian Kong
- Department of Chemistry; ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 P.R. China
| | - Haoran Li
- Department of Chemistry; ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 P.R. China
| | - Congmin Wang
- Department of Chemistry; ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 P.R. China
| |
Collapse
|
11
|
Zhang Y, Yue T, Cao H, Gao Y, Zhang W. Photocontrollable Supramolecular Self-Assembly of a Porphyrin Derivative that Contains a Polyhedral Oligomeric Silsesquioxane (POSS). ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yong Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Tao Yue
- Shanghai Key Laboratory of Advanced Polymeric Materials; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Hongliang Cao
- Shanghai Key Laboratory of Advanced Polymeric Materials; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Yun Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Weian Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
12
|
Pan M, Cao N, Lin W, Luo X, Chen K, Che S, Li H, Wang C. Reversible CO2 Capture by Conjugated Ionic Liquids through Dynamic Covalent Carbon-Oxygen Bonds. CHEMSUSCHEM 2016; 9:2351-2357. [PMID: 27458723 DOI: 10.1002/cssc.201600402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Indexed: 06/06/2023]
Abstract
The strong chemisorption of CO2 is always accompanied by a high absorption enthalpy, and traditional methods to reduce the absorption enthalpy lead to decreased CO2 capacities. Through the introduction of a large π-conjugated structure into the anion, a dual-tuning approach for the improvement of CO2 capture by anion-functionalized ionic liquids (ILs) resulted in a high capacity of up to 0.96 molCO2 mol-1IL and excellent reversibility. The increased capacity and improved desorption were supported by quantum chemical calculations, spectroscopic investigations, and thermogravimetric analysis. The increased capacity may be a result of the strengthened dynamic covalent bonds in these π-electron-conjugated structures through anion aggregation upon the uptake of CO2 , and the improved desorption originates from the charge dispersion of interaction sites through the large π-electron delocalization. These results provide important insights into effective strategies for CO2 capture.
Collapse
Affiliation(s)
- Mingguang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ningning Cao
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wenjun Lin
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiaoyan Luo
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Kaihong Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Siying Che
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Haoran Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Congmin Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.
| |
Collapse
|
13
|
Sultanova ED, Krasnova EG, Kharlamov SV, Nasybullina GR, Yanilkin VV, Nizameev IR, Kadirov MK, Mukhitova RK, Zakharova LY, Ziganshina AY, Konovalov AI. Thermoresponsive Polymer Nanoparticles Based on Viologen Cavitands. Chempluschem 2014. [DOI: 10.1002/cplu.201402221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Elza D. Sultanova
- Department of Calixarene Chemistry, A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, IOPC, Arbuzov str. 8, 420088 Kazan (Russia)
| | - Ekaterina G. Krasnova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, IOPC, Arbuzov str. 8, 420088 Kazan (Russia)
| | - Sergey V. Kharlamov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, IOPC, Arbuzov str. 8, 420088 Kazan (Russia)
| | - Gulnaz R. Nasybullina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, IOPC, Arbuzov str. 8, 420088 Kazan (Russia)
| | - Vitaly V. Yanilkin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, IOPC, Arbuzov str. 8, 420088 Kazan (Russia)
| | - Irek R. Nizameev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, IOPC, Arbuzov str. 8, 420088 Kazan (Russia)
| | - Marsil K. Kadirov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, IOPC, Arbuzov str. 8, 420088 Kazan (Russia)
| | - Rezeda K. Mukhitova
- Department of Calixarene Chemistry, A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, IOPC, Arbuzov str. 8, 420088 Kazan (Russia)
| | - Lucia Y. Zakharova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, IOPC, Arbuzov str. 8, 420088 Kazan (Russia)
| | - Albina Y. Ziganshina
- Department of Calixarene Chemistry, A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, IOPC, Arbuzov str. 8, 420088 Kazan (Russia)
| | - Alexander I. Konovalov
- Department of Calixarene Chemistry, A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, IOPC, Arbuzov str. 8, 420088 Kazan (Russia)
| |
Collapse
|
14
|
Xing P, Chu X, Li S, Ma M, Hao A. Hybrid Gels Assembled from Fmoc-Amino Acid and Graphene Oxide with Controllable Properties. Chemphyschem 2014; 15:2377-85. [DOI: 10.1002/cphc.201402018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/25/2014] [Indexed: 12/24/2022]
|
15
|
Lay CL, Kumar JN, Liu CK, Lu X, Liu Y. A Rocket-Like Encapsulation and Delivery System with Two-Stage Booster Layers: pH-Responsive Poly(methacrylic acid)/Poly(ethylene glycol) Complex-Coated Hollow Silica Vesicles. Macromol Rapid Commun 2013; 34:1563-8. [DOI: 10.1002/marc.201300529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/09/2013] [Indexed: 11/07/2022]
Affiliation(s)
| | - Jatin N. Kumar
- Institute of Materials Research and Engineering; A*STAR (Agency for Science, Technology and Research); 3 Research Link; Singapore; 117602; Singapore
| | - Connie K. Liu
- Institute of Materials Research and Engineering; A*STAR (Agency for Science, Technology and Research); 3 Research Link; Singapore; 117602; Singapore
| | - Xuehong Lu
- School of Materials Science and Engineering; Nanyang Technological University; Block N4.1, Nanyang Avenue; Singapore; 639798; Singapore
| | - Ye Liu
- Institute of Materials Research and Engineering; A*STAR (Agency for Science, Technology and Research); 3 Research Link; Singapore; 117602; Singapore
| |
Collapse
|
16
|
Yan Q, Wang J, Yin Y, Yuan J. Breathing Polymersomes: CO
2
‐Tuning Membrane Permeability for Size‐Selective Release, Separation, and Reaction. Angew Chem Int Ed Engl 2013; 52:5070-3. [DOI: 10.1002/anie.201300397] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Qiang Yan
- Key Lab of Organic Optoelectronics & Engineering Department of Chemistry, Tsinghua University, Beijing 100084 (P.R. China)
| | - Jianbo Wang
- Computer Science School, China Women's University, Beijing 100084 (P.R. China)
| | - Yingwu Yin
- Key Lab of Organic Optoelectronics & Engineering Department of Chemistry, Tsinghua University, Beijing 100084 (P.R. China)
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics & Engineering Department of Chemistry, Tsinghua University, Beijing 100084 (P.R. China)
| |
Collapse
|
17
|
Yan Q, Wang J, Yin Y, Yuan J. Breathing Polymersomes: CO2-Tuning Membrane Permeability for Size-Selective Release, Separation, and Reaction. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300397] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|