1
|
Hu R, Li Y, Yang Y, Liu M. Mass spectrometry-based strategies for single-cell metabolomics. MASS SPECTROMETRY REVIEWS 2023; 42:67-94. [PMID: 34028064 DOI: 10.1002/mas.21704] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Single cell analysis has drawn increasing interest from the research community due to its capability to interrogate cellular heterogeneity, allowing refined tissue classification and facilitating novel biomarker discovery. With the advancement of relevant instruments and techniques, it is now possible to perform multiple omics including genomics, transcriptomics, metabolomics or even proteomics at single cell level. In comparison with other omics studies, single-cell metabolomics (SCM) represents a significant challenge since it involves many types of dynamically changing compounds with a wide range of concentrations. In addition, metabolites cannot be amplified. Although difficult, considerable progress has been made over the past decade in mass spectrometry (MS)-based SCM in terms of processing technologies and biochemical applications. In this review, we will summarize recent progress in the development of promising MS platforms, sample preparation methods and SCM analysis of various cell types (including plant cell, cancer cell, neuron, embryo cell, and yeast cell). Current limitations and future research directions in the field of SCM will also be discussed.
Collapse
Affiliation(s)
- Rui Hu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunhuang Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Li R, Zhou Y, Liu C, Pei C, Shu W, Zhang C, Liu L, Zhou L, Wan J. Design of Multi‐Shelled Hollow Cr
2
O
3
Spheres for Metabolic Fingerprinting. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rongxin Li
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Yongjie Zhou
- Department of Psychiatric Rehabilitation Shenzhen Kangning Hospital Shenzhen Guangdong 518118 P. R. China
| | - Chao Liu
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Congcong Pei
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Lianzhong Liu
- Wuhan Mental Health Center Tongji Medical College of Huazhong University of Science and Technology Wuhan Hubei 430032 P. R. China
| | - Liang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan Hubei 430070 P. R. China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| |
Collapse
|
3
|
Li R, Zhou Y, Liu C, Pei C, Shu W, Zhang C, Liu L, Zhou L, Wan J. Design of Multi-Shelled Hollow Cr 2 O 3 Spheres for Metabolic Fingerprinting. Angew Chem Int Ed Engl 2021; 60:12504-12512. [PMID: 33721392 DOI: 10.1002/anie.202101007] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/08/2021] [Indexed: 12/15/2022]
Abstract
Schizophrenia (SZ) detection enables effective treatment to improve the clinical outcome, but objective and reliable SZ diagnostics are still limited. An ideal diagnosis of SZ suited for robust clinical screening must address detection throughput, low invasiveness, and diagnosis accuracy. Herein, we built a multi-shelled hollow Cr2 O3 spheres (MHCSs) assisted laser desorption/ionization mass spectrometry (LDI MS) platform for the direct metabolic profiling of biofluids towards SZ diagnostics. The MHCSs displayed strong light absorption for enhanced ionization and microscale surface roughness with stability for the effective LDI of metabolites. We profiled urine and serum metabolites (≈1 μL) with the enhanced LDI efficacy in seconds. We discriminated SZ patients (SZs) from healthy controls (HCs) with the highest area under the curve (AUC) value of 1.000 for the blind test. We identified four compounds with optimal diagnostic power as a simplified metabolite panel for SZ and demonstrated the metabolite quantification for clinic use. Our approach accelerates the growth of new platforms toward a precision diagnosis in the near future.
Collapse
Affiliation(s)
- Rongxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yongjie Zhou
- Department of Psychiatric Rehabilitation, Shenzhen Kangning Hospital, Shenzhen, Guangdong, 518118, P. R. China
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Congcong Pei
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Lianzhong Liu
- Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, 430032, P. R. China
| | - Liang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
4
|
Cao J, Shi X, Gurav DD, Huang L, Su H, Li K, Niu J, Zhang M, Wang Q, Jiang M, Qian K. Metabolic Fingerprinting on Synthetic Alloys for Medulloblastoma Diagnosis and Radiotherapy Evaluation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000906. [PMID: 32342553 DOI: 10.1002/adma.202000906] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/17/2020] [Indexed: 05/25/2023]
Abstract
Diagnostics is the key in screening and treatment of cancer. As an emerging tool in precision medicine, metabolic analysis detects end products of pathways, and thus is more distal than proteomic/genetic analysis. However, metabolic analysis is far from ideal in clinical diagnosis due to the sample complexity and metabolite abundance in patient specimens. A further challenge is real-time and accurate tracking of treatment effect, e.g., radiotherapy. Here, Pd-Au synthetic alloys are reported for mass-spectrometry-based metabolic fingerprinting and analysis, toward medulloblastoma diagnosis and radiotherapy evaluation. A core-shell structure is designed using magnetic core particles to support Pd-Au alloys on the surface. Optimized synthetic alloys enhance the laser desorption/ionization efficacy and achieve direct detection of 100 nL of biofluids in seconds. Medulloblastoma patients are differentiated from healthy controls with average diagnostic sensitivity of 94.0%, specificity of 85.7%, and accuracy of 89.9%, by machine learning of metabolic fingerprinting. Furthermore, the radiotherapy process of patients is monitored and a preliminary panel of serum metabolite biomarkers is identified with gradual changes. This work will lead to the application-driven development of novel materials with tailored structural design and establishment of new protocols for precision medicine in near future.
Collapse
Affiliation(s)
- Jing Cao
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Xuejiao Shi
- Department of Oncology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Deepanjali D Gurav
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Lin Huang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Haiyang Su
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Keke Li
- Department of Oncology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Jingyang Niu
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Mengji Zhang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Qian Wang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Mawei Jiang
- Department of Oncology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, 160 Pujian Road, Shanghai, 200127, P. R. China
| |
Collapse
|
5
|
Pei C, Liu C, Wang Y, Cheng D, Li R, Shu W, Zhang C, Hu W, Jin A, Yang Y, Wan J. FeOOH@Metal-Organic Framework Core-Satellite Nanocomposites for the Serum Metabolic Fingerprinting of Gynecological Cancers. Angew Chem Int Ed Engl 2020; 59:10831-10835. [PMID: 32237260 DOI: 10.1002/anie.202001135] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/05/2020] [Indexed: 12/11/2022]
Abstract
High-throughput metabolic analysis is of significance in diagnostics, while tedious sample pretreatment has largely hindered its clinic application. Herein, we designed FeOOH@ZIF-8 composites with enhanced ionization efficiency and size-exclusion effect for laser desorption/ionization mass spectrometry (LDI-MS)-based metabolic diagnosis of gynecological cancers. The FeOOH@ZIF-8-assisted LDI-MS achieved rapid, sensitive, and selective metabolic fingerprints of the native serum without any enrichment or purification. Further analysis of extracted serum metabolic fingerprints successfully discriminated patients with gynecological cancers (GCs) from healthy controls and also differentiated three major subtypes of GCs. Given the low cost, high-throughput, and easy operation, our approach brings a new dimension to disease analysis and classification.
Collapse
Affiliation(s)
- Congcong Pei
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - You Wang
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, Shanghai, 200001, P. R. China.,Department of Obstetrics and Gynecology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, P. R. China
| | - Dan Cheng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rongxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Wenli Hu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Aihua Jin
- Institute of Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
6
|
Pei C, Liu C, Wang Y, Cheng D, Li R, Shu W, Zhang C, Hu W, Jin A, Yang Y, Wan J. FeOOH@Metal–Organic Framework Core–Satellite Nanocomposites for the Serum Metabolic Fingerprinting of Gynecological Cancers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Congcong Pei
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - Chao Liu
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - You Wang
- Shanghai Key Laboratory of Gynecologic OncologyRenji Hospital Shanghai 200001 P. R. China
- Department of Obstetrics and GynecologySchool of MedicineShanghai Jiao Tong University Shanghai 200001 P. R. China
| | - Dan Cheng
- Australian Institute for Bioengineering and NanotechnologyThe University of Queensland Brisbane QLD 4072 Australia
| | - Rongxin Li
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - Chaoqi Zhang
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - Wenli Hu
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - Aihua Jin
- Institute of Molecular BioscienceThe University of Queensland St Lucia Queensland 4072 Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and NanotechnologyThe University of Queensland Brisbane QLD 4072 Australia
| | - Jingjing Wan
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| |
Collapse
|
7
|
Zhang L, Vertes A. Einzelzell‐Massenspektrometrie zur Untersuchung zellulärer Heterogenität. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201709719] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Linwen Zhang
- Department of Chemistry The George Washington University Washington DC 20052 USA
| | - Akos Vertes
- Department of Chemistry The George Washington University Washington DC 20052 USA
| |
Collapse
|
8
|
Zhang L, Vertes A. Single‐Cell Mass Spectrometry Approaches to Explore Cellular Heterogeneity. Angew Chem Int Ed Engl 2018; 57:4466-4477. [DOI: 10.1002/anie.201709719] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/27/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Linwen Zhang
- Department of Chemistry The George Washington University Washington DC 20052 USA
| | - Akos Vertes
- Department of Chemistry The George Washington University Washington DC 20052 USA
| |
Collapse
|
9
|
Stopka SA, Rong C, Korte AR, Yadavilli S, Nazarian J, Razunguzwa TT, Morris NJ, Vertes A. Molecular Imaging of Biological Samples on Nanophotonic Laser Desorption Ionization Platforms. Angew Chem Int Ed Engl 2016; 55:4482-6. [DOI: 10.1002/anie.201511691] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Sylwia A. Stopka
- Department of Chemistry; The George Washington University; Washington DC 20052 USA
| | - Charles Rong
- Department of Chemistry; The George Washington University; Washington DC 20052 USA
| | - Andrew R. Korte
- Department of Chemistry; The George Washington University; Washington DC 20052 USA
| | - Sridevi Yadavilli
- Research Center for Genetic Medicine; Children's National Medical Center; Washington DC 2001 USA
| | - Javad Nazarian
- Research Center for Genetic Medicine; Children's National Medical Center; Washington DC 2001 USA
| | | | | | - Akos Vertes
- Department of Chemistry; The George Washington University; Washington DC 20052 USA
| |
Collapse
|
10
|
Stopka SA, Rong C, Korte AR, Yadavilli S, Nazarian J, Razunguzwa TT, Morris NJ, Vertes A. Molecular Imaging of Biological Samples on Nanophotonic Laser Desorption Ionization Platforms. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511691] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sylwia A. Stopka
- Department of Chemistry; The George Washington University; Washington DC 20052 USA
| | - Charles Rong
- Department of Chemistry; The George Washington University; Washington DC 20052 USA
| | - Andrew R. Korte
- Department of Chemistry; The George Washington University; Washington DC 20052 USA
| | - Sridevi Yadavilli
- Research Center for Genetic Medicine; Children's National Medical Center; Washington DC 2001 USA
| | - Javad Nazarian
- Research Center for Genetic Medicine; Children's National Medical Center; Washington DC 2001 USA
| | | | | | - Akos Vertes
- Department of Chemistry; The George Washington University; Washington DC 20052 USA
| |
Collapse
|
11
|
|