1
|
Rasoulzadeh F, Amjadi M. A novel fluorescent sensor for selective rifampicin detection based on the bio-inspired molecularly imprinted polymer-AgInS 2/ZnS quantum dots. ANAL SCI 2024; 40:1051-1059. [PMID: 38461465 DOI: 10.1007/s44211-024-00512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/08/2024] [Indexed: 03/12/2024]
Abstract
A fluorescent sensing material based on the ternary core-shell quantum dots with outstanding optical properties and a bio-inspired molecularly imprinted polymer (MIP) as a recognition element has been prepared for selective detection of rifampicin (RFP). Firstly, AgInS2/ZnS core/shell quantum dots (ZAIS QDs) were prepared by a hydrothermal process. Then, the fluorescent sensor was prepared by coating these QDs by a dopamine-based MIP layer. The fluorescence of MIP@ZAIS QDs was quenched by RFP probably due to the photoinduced electron transfer process. The quenching constant was much higher for MIP@ZAIS QDs than the non-imprinted polymer@QDs, indicating that MIP@ZAIS QDs could selectively recognize RFP. Under the optimized conditions, the sensor had a good linear relationship at the RFP concentration range of 5.0 to 300 nM and the limit of detection was 1.25 nM. The respond time of the MIP@ZAIS QDs was 5 min, and the imprinting factor was 6.3. It also showed good recoveries ranging from 98 to 101%, for analysis of human plasma samples. The method is simple and effective for the detection of RFP and offers a practical application for the rapid analysis of human plasma samples.
Collapse
Affiliation(s)
- Farzaneh Rasoulzadeh
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166616471, Iran
| |
Collapse
|
2
|
Wang K, Yang X, Zhang S, Zhang P, Huang S. Nanopore Discrimination of Nucleotide Sugars. NANO LETTERS 2023; 23:8620-8627. [PMID: 37690030 DOI: 10.1021/acs.nanolett.3c02455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Nucleotide sugars, the glycosyl donors in the biosynthesis of carbohydrates, are critical ingredients in the growth and development of all living organisms. A variety of nucleotide sugars simultaneously exist in biological samples. They, however, have only minor structural differences, which make them extremely difficult to discriminate. In this work, a phenylboronic acid (PBA)-modified Mycobacterium smegmatis porin A (MspA) hetero-octamer was applied to sense nucleotide sugars. Five representative nucleotide sugars, including guanosine diphosphate mannose (GDP-Man), adenosine diphosphate glucose (ADP-Glc), uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), uridine diphosphate glucose (UDP-Glc), and uridine diphosphate glucoronic acid (UDP-GlcA), were successfully distinguished. A custom machine learning algorithm was also employed to automatically identify events, reporting a general accuracy of 99.4%. This sensing strategy provides a rapid, direct, and accurate method for identifying different nucleotide sugars. However, single-molecule identification of nucleotide sugars has never been previously reported, to the best of our knowledge.
Collapse
Affiliation(s)
- Kefan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Xian Yang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| |
Collapse
|
3
|
Xu S, He H, Liu Z. New Promises of Advanced Molecular Recognition: Bioassays, Single Cell Analysis, Cancer Therapy, and Beyond. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shuxin Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Avenue Nanjing Jiangsu 210023 China
| | - Hui He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Avenue Nanjing Jiangsu 210023 China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Avenue Nanjing Jiangsu 210023 China
| |
Collapse
|
4
|
Zhang B, Tong Y, He J, Sun B, Zhang F, Tian M. Boronate-modified polyethyleneimine dendrimer as a solid-phase extraction adsorbent for the analysis of luteolin via HPLC. RSC Adv 2021; 11:39821-39828. [PMID: 35494127 PMCID: PMC9044553 DOI: 10.1039/d1ra07564k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023] Open
Abstract
Luteolin (LTL) is a flavonoid containing a cis-diol, which has significant anti-inflammatory, anti-allergic, anti-diabetic, anti-cancer and neuroprotective activities. In this work, a silver modified boric acid affinity polyvinyl imine (PEI) dendritic adsorbent (PPEI-Ag@CPBA) was prepared on polystyrene (PS) for the rapid recognition and selective separation of LTL. A thin layer of polydopamine (PDA) was formed on the surface of the substrate by self-polymerization, and a PDA-coated PS material (PS@PDA) was obtained. PEI with sufficient active amino groups was grafted onto PS@PDA to obtain a PEI-modified material (PS@PDA@PEI), then AgNO3 was reduced with NaBH4, and PS@PDA@PEI was embedded on Ag. Finally, PPEI-Ag@CPBA was obtained through the condensation reaction of PEI with 4-carboxyphenyl boric acid (CPBA). The adsorption conditions were optimized, the optimal pH and the optimum amount of adsorbent were determined, and the maximum adsorption capacity was found to be 2.49 mg g-1. This method has been successfully applied to the selective identification of LTL in peanut shell samples, and provides a practical platform for the detection of LTL in complex substrates.
Collapse
Affiliation(s)
- Baoyue Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 P. R. China
| | - Yukui Tong
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 P. R. China
| | - Jianghua He
- Ruyuan Hec Pharm Co., Ltd. Shaoguan 512700 Guangdong Province P. R. China
| | - Baodong Sun
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University Harbin 150025 China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 P. R. China
| | - Miaomiao Tian
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 P. R. China
| |
Collapse
|
5
|
Zhu Y, Pan Z, Rong J, Mao K, Yang D, Zhang T, Xu J, Qiu F, Pan J. Boronate affinity surface imprinted polymers supported on dendritic fibrous silica for enhanced selective separation of shikimic acid via covalent binding. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Ma X, Li M, Tong P, Zhao C, Li J, Xu G. A strategy for construction of highly sensitive glycosyl imprinted electrochemical sensor based on sandwich-like multiple signal enhancement and determination of neural cell adhesion molecule. Biosens Bioelectron 2020; 156:112150. [DOI: 10.1016/j.bios.2020.112150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022]
|
7
|
Qin X, Zhang Z, Shao H, Zhang R, Chen L, Yang X. Boronate affinity material-based sensors for recognition and detection of glycoproteins. Analyst 2020; 145:7511-7527. [DOI: 10.1039/d0an01410a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review comprehensively presents the current overview and development potential of BAMs-based sensors for glycoprotein recognition and detection.
Collapse
Affiliation(s)
- Xiaoxiao Qin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P.R. China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P.R. China
| | - Hongjun Shao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P.R. China
| | - Runguang Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P.R. China
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Research Centre for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P.R. China
| |
Collapse
|
8
|
Bie Z, Zhao W, Lv Z, Liu S, Chen Y. Preparation of salbutamol imprinted magnetic nanoparticles via boronate affinity oriented surface imprinting for the selective analysis of trace salbutamol residues. Analyst 2019; 144:3128-3135. [DOI: 10.1039/c9an00198k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Salbutamol (SAL) is one of the most widely abused feed additives in animal husbandry.
Collapse
Affiliation(s)
- Zijun Bie
- Department of Chemistry
- Bengbu Medical University
- Bengbu 233000
- China
- School of Pharmacy
| | - Weiman Zhao
- School of Pharmacy
- Bengbu Medical University
- Bengbu 233000
- China
| | - Zhongyuan Lv
- Department of Chemistry
- Bengbu Medical University
- Bengbu 233000
- China
| | - Songlin Liu
- Department of Chemistry
- Bengbu Medical University
- Bengbu 233000
- China
| | - Yang Chen
- Department of Chemistry
- Bengbu Medical University
- Bengbu 233000
- China
- School of Pharmacy
| |
Collapse
|
9
|
Wang Y, Hai X, E S, Chen M, Yang T, Wang J. Boronic acid functionalized g-C 3N 4 nanosheets for ultrasensitive and selective sensing of glycoprotein in the physiological environment. NANOSCALE 2018; 10:4913-4920. [PMID: 29480294 DOI: 10.1039/c7nr09342j] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
As important biomarkers, glycoprotein sensing is frequently facilitated by boronic acid binding with its cis-diols. However, boronic acid based sensors suffer from drawbacks of alkali restriction and/or sensitivity limitation. Herein, we report boronic acid decorated g-C3N4 nanosheets (B-g-CN) with a Wulff-type boronic acid feature, which selectively bind glycoprotein under physiological conditions. Meanwhile, the binding causes significant enhancement of the B-g-CN nanosheet fluorescence, providing the basis for glycoprotein sensing. With IgG as a model, a detection limit (LOD) of 2.2 nM (3σ/s, n = 11) was obtained within a linear range of 6.7-67 nM. The LOD was further improved to 52 pM subject to enrichment of the nanosheets, which well enables IgG assay in human urine samples. Moreover, it was successful in imaging endogenous and exogenous glycoproteins in living cells.
Collapse
Affiliation(s)
- Yiting Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | | | | | | | | | | |
Collapse
|
10
|
KUBO T, ARIMURA S, NAITO T, SANO T, OTSUKA K. Competitive ELISA-like Label-free Detection of Lysozyme by Using a Fluorescent Monomer-doped Molecularly Imprinted Hydrogel. ANAL SCI 2017; 33:1311-1315. [DOI: 10.2116/analsci.33.1311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Takuya KUBO
- Graduate School of Engineering, Kyoto University
| | | | | | - Tomoharu SANO
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies
| | - Koji OTSUKA
- Graduate School of Engineering, Kyoto University
| |
Collapse
|
11
|
Liu J, Yin D, Wang S, Chen HY, Liu Z. Probing Low-Copy-Number Proteins in a Single Living Cell. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608237] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jia Liu
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue Nanjing 210023 China
| | - Danyang Yin
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue Nanjing 210023 China
| | - Shuangshou Wang
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue Nanjing 210023 China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue Nanjing 210023 China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue Nanjing 210023 China
| |
Collapse
|
12
|
Liu J, Yin D, Wang S, Chen HY, Liu Z. Probing Low-Copy-Number Proteins in a Single Living Cell. Angew Chem Int Ed Engl 2016; 55:13215-13218. [DOI: 10.1002/anie.201608237] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Jia Liu
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue Nanjing 210023 China
| | - Danyang Yin
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue Nanjing 210023 China
| | - Shuangshou Wang
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue Nanjing 210023 China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue Nanjing 210023 China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue Nanjing 210023 China
| |
Collapse
|
13
|
Song P, Huang P, Huang T, Li H, Chen W, Lin L, Feng S, Tian R. Facile synthesis of carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles for selective enrichment of glycopeptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30 Suppl 1:190-195. [PMID: 27539437 DOI: 10.1002/rcm.7626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
RATIONALE Selective enrichment of glycopeptides prior to mass spectrometry (MS) analysis is essential due to the low abundance of the modified glycopeptides in complex samples, ion suppression effects during MS ionization and detection caused by the co-presence of non-glycosylated peptides, etc. Among different enrichment approaches, hydrophilic interaction liquid chromatography (HILIC)-based magnetic separation has become one of the most popular methods in recent years, due to its high efficiency and selectivity for glycopeptide enrichment. METHODS Herein, novel carboxymethyl-β-cyclodextrin (CMCD)-modified magnetic nanoparticles (MNPs) were synthesized via a carbodiimide activation method. CMCD was covalently bonded with the -OH group on the surface of MNPs through carbodiimide, and the proposed procedure provides a rapid and efficient alternative for glycopeptide enrichment due to its stable interaction, time-saving, and easy operation. RESULTS The prepared absorbents with a mean diameter of 15 nm demonstrated a strong magnetic response to an externally applied magnetic field. The results of thermogravimetric analysis showed the content of bound CMCD was 3 wt%. The outer CMCD layer conjugated on the Fe3 O4 core showed high hydrophilic surface property. In the analysis of a complex mouse liver sample, a total of 666 unique N-glycosylation sites corresponding to 494 glycosylated proteins were identified successfully. CONCLUSIONS The study demonstrated an easy-to-use CMCD-modified MNPs-based approach with high selectivity and high capacity in the enrichment of low-abundance glycopeptides from complex biological samples. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Peipei Song
- Key Laboratory of Oil Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, 830046, China
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Peiwu Huang
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Tengjun Huang
- Key Laboratory of Oil Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, 830046, China
| | - Hua Li
- Materials Characterization & Preparation Center, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Wendong Chen
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Lin Lin
- Materials Characterization & Preparation Center, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Shun Feng
- Key Laboratory of Oil Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, 830046, China
| | - Ruijun Tian
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen, 518055, China
| |
Collapse
|
14
|
Chen G, Qiu J, Fang X, Xu J, Cai S, Chen Q, Liu Y, Zhu F, Ouyang G. Boronate Affinity-Molecularly Imprinted Biocompatible Probe: An Alternative for Specific Glucose Monitoring. Chem Asian J 2016; 11:2240-5. [PMID: 27411946 DOI: 10.1002/asia.201600797] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Guosheng Chen
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-sen University; 135 West Xingang Road Guangzhou 510275 China
| | - Junlang Qiu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-sen University; 135 West Xingang Road Guangzhou 510275 China
| | - Xu'an Fang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-sen University; 135 West Xingang Road Guangzhou 510275 China
| | - Jianqiao Xu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-sen University; 135 West Xingang Road Guangzhou 510275 China
| | - Siying Cai
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-sen University; 135 West Xingang Road Guangzhou 510275 China
| | - Qing Chen
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-sen University; 135 West Xingang Road Guangzhou 510275 China
| | - Yan Liu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-sen University; 135 West Xingang Road Guangzhou 510275 China
| | - Fang Zhu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-sen University; 135 West Xingang Road Guangzhou 510275 China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-sen University; 135 West Xingang Road Guangzhou 510275 China
| |
Collapse
|
15
|
Li W, Dong K, Ren J, Qu X. A β-Lactamase-Imprinted Responsive Hydrogel for the Treatment of Antibiotic-Resistant Bacteria. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wen Li
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 China
- University of Chinese Academy of Sciences; Beijing 100039 China
| | - Kai Dong
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 China
- University of Chinese Academy of Sciences; Beijing 100039 China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 China
| |
Collapse
|
16
|
Li W, Dong K, Ren J, Qu X. A β-Lactamase-Imprinted Responsive Hydrogel for the Treatment of Antibiotic-Resistant Bacteria. Angew Chem Int Ed Engl 2016; 55:8049-53. [DOI: 10.1002/anie.201600205] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/10/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Wen Li
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 China
- University of Chinese Academy of Sciences; Beijing 100039 China
| | - Kai Dong
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 China
- University of Chinese Academy of Sciences; Beijing 100039 China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 China
| |
Collapse
|
17
|
Molecularly imprinted polymers as recognition materials for electronic tongues. Biosens Bioelectron 2015; 74:856-64. [PMID: 26233642 DOI: 10.1016/j.bios.2015.07.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/10/2015] [Accepted: 07/23/2015] [Indexed: 01/18/2023]
Abstract
For over three decades now, molecularly imprinted polymers (MIPs) have successfully been used for selective chemical sensing because the shape and size of their imprinted molecular cavities perfectly matched those of the target analyte molecules. Moreover, orientation of recognizing sites of these cavities corresponded to those of the binding sites of the template molecules. In contrast, electronic tongue (e-tongue) is usually an array of low-affinity recognition units. Its selectivity is based on recognition pattern or multivariate analysis. Merging these two sensing devices led to a synergetic hybrid sensor, an MIP based e-tongue. Fabrication of these e-tongues permitted simultaneous sensing and discriminating several analytes in complex solutions of many components so that these arrays compensated for limitation in cross-reactivity of MIPs. Apparently, analytical signals generated by MIP-based e-tongues, compared to those of ordinary sensor arrays, were more reliable where a unique pattern or 'fingerprint' for each analyte was generated. Additionally, several transduction platforms (from spectroscopic to electrochemical) engaged in constructing MIP-based e-tongues, found their broad and flexible applications. The present review critically evaluates achievements in recent developments of the MIP based e-tongues for chemosensing.
Collapse
|
18
|
Bie Z, Chen Y, Ye J, Wang S, Liu Z. Boronate-Affinity Glycan-Oriented Surface Imprinting: A New Strategy to Mimic Lectins for the Recognition of an Intact Glycoprotein and Its Characteristic Fragments. Angew Chem Int Ed Engl 2015; 54:10211-5. [PMID: 26179149 DOI: 10.1002/anie.201503066] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Indexed: 01/14/2023]
Abstract
Lectins possess unique binding properties and are of particular value in molecular recognition. However, lectins suffer from several disadvantages, such as being hard to prepare and showing poor storage stability. Boronate-affinity glycan-oriented surface imprinting was developed as a new strategy for the preparation of lectin-like molecularly imprinted polymers (MIPs). The prepared MIPs could specifically recognize an intact glycoprotein and its characteristic fragments, even within a complex sample matrix. Glycan-imprinted MIPs could thus prove to be powerful tools for important applications such as proteomics, glycomics, and diagnostics.
Collapse
Affiliation(s)
- Zijun Bie
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)
| | - Yang Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)
| | - Jin Ye
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)
| | - Shuangshou Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093 (China).
| |
Collapse
|
19
|
Bie Z, Chen Y, Ye J, Wang S, Liu Z. Boronate-Affinity Glycan-Oriented Surface Imprinting: A New Strategy to Mimic Lectins for the Recognition of an Intact Glycoprotein and Its Characteristic Fragments. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503066] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Kubo T, Kanemori K, Kusumoto R, Kawai T, Sueyoshi K, Naito T, Otsuka K. Simple and effective label-free capillary electrophoretic analysis of sugars by complexation using quinoline boronic acids. Anal Chem 2015; 87:5068-73. [PMID: 25907638 DOI: 10.1021/acs.analchem.5b00998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An effective separation and detection procedure for sugars by capillary electrophoresis (CE) using a complexation between quinolineboronic acid (QBA) and multiple hydroxyl structure of sugar alcohol is reported. We investigated the variation of fluorescence spectra of a variety of QBAs with sorbitol at a wide range of pH conditions and then found that 5-isoQBA strongly enhanced the fluorescence intensity by the complexation at basic pH conditions. The other sugar alcohols having multiple hydroxyls also revealed the enhancement of the fluorescence intensity with 5-isoQBA, whereas the alternation of the intensity was not found in the sugars such as glucose. After optimization of the 5-isoQBA concentration and pH of the buffered solution in CE analysis, 6 sugar alcohols were successfully separated in the order based on the formation constants with 5-isoQBA, which were calculated from the variation of the fluorescence intensity with each sugar alcohol and 5-isoQBA. Furthermore, the limits of detection for sorbitol and xylitol by the CE method were estimated at 15 and 27 μM, respectively.
Collapse
Affiliation(s)
- Takuya Kubo
- †Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Koichi Kanemori
- †Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Risa Kusumoto
- †Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takayuki Kawai
- ‡Laboratory for Integrated Biodevice Unit, Quantitative Biology Center, RIKEN, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kenji Sueyoshi
- §Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Toyohiro Naito
- †Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Koji Otsuka
- †Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
21
|
Zhang Z, Guan Y, Li M, Zhao A, Ren J, Qu X. Highly stable and reusable imprinted artificial antibody used for in situ detection and disinfection of pathogens. Chem Sci 2015; 6:2822-2826. [PMID: 28706671 PMCID: PMC5489049 DOI: 10.1039/c5sc00489f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/15/2015] [Indexed: 12/20/2022] Open
Abstract
Sandwich ELISA methods have been widely used for biomarker and pathogen detection because of their high specificity and sensitivity. However, the main drawbacks of this assay are the cost, the time-consuming procedure for the isolation of antibodies and their poor stability. To overcome these restrictions, we herein fabricated artificial antibodies based on imprinting technology and developed a sandwich ELISA for pathogen detection. Both the capture and detection antibodies were obtained via an in situ method, with simplicity, rapidity and low cost. The peroxidase mimics, the CeO2 nanoparticles, as signal generators were integrated with the detection antibody. The fabricated artificial antibodies exhibited not only natural antibody-like binding affinities and selectivities, but also superior stability and reusability. The detection limit was about 500 CFU mL-1, which is much lower than that of traditional ELISA methods (104 to 105 CFU mL-1). Furthermore, the capture antibody can disinfect pathogens in situ.
Collapse
Affiliation(s)
- Zhijun Zhang
- Laboratory of Chemical Biology and Division of Biological Inorganic Chemistry , State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , University of Chinese Academy of Sciences , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Yijia Guan
- Laboratory of Chemical Biology and Division of Biological Inorganic Chemistry , State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , University of Chinese Academy of Sciences , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Meng Li
- Laboratory of Chemical Biology and Division of Biological Inorganic Chemistry , State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , University of Chinese Academy of Sciences , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Andong Zhao
- Laboratory of Chemical Biology and Division of Biological Inorganic Chemistry , State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , University of Chinese Academy of Sciences , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Jinsong Ren
- Laboratory of Chemical Biology and Division of Biological Inorganic Chemistry , State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , University of Chinese Academy of Sciences , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Xiaogang Qu
- Laboratory of Chemical Biology and Division of Biological Inorganic Chemistry , State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , University of Chinese Academy of Sciences , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| |
Collapse
|
22
|
Zhang W, Liu W, Li P, Xiao H, Wang H, Tang B. A Fluorescence Nanosensor for Glycoproteins with Activity Based on the Molecularly Imprinted Spatial Structure of the Target and Boronate Affinity. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405634] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
Zhang W, Liu W, Li P, Xiao H, Wang H, Tang B. A Fluorescence Nanosensor for Glycoproteins with Activity Based on the Molecularly Imprinted Spatial Structure of the Target and Boronate Affinity. Angew Chem Int Ed Engl 2014; 53:12489-93. [DOI: 10.1002/anie.201405634] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/09/2014] [Indexed: 11/09/2022]
|
24
|
Ye J, Chen Y, Liu Z. A Boronate Affinity Sandwich Assay: An Appealing Alternative to Immunoassays for the Determination of Glycoproteins. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405525] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
25
|
Ye J, Chen Y, Liu Z. A Boronate Affinity Sandwich Assay: An Appealing Alternative to Immunoassays for the Determination of Glycoproteins. Angew Chem Int Ed Engl 2014; 53:10386-9. [DOI: 10.1002/anie.201405525] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Indexed: 11/06/2022]
|