1
|
Chen J, Dong S, Fang W, Jiang Y, Chen Z, Qin X, Wang C, Zhou H, Jin L, Feng Y, Wang B, Cong Z. Regiodivergent and Enantioselective Hydroxylation of C-H bonds by Synergistic Use of Protein Engineering and Exogenous Dual-Functional Small Molecules. Angew Chem Int Ed Engl 2023; 62:e202215088. [PMID: 36417593 DOI: 10.1002/anie.202215088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
It is a great challenge to optionally access diverse hydroxylation products from a given substrate bearing multiple reaction sites of sp3 and sp2 C-H bonds. Herein, we report the highly selective divergent hydroxylation of alkylbenzenes by an engineered P450 peroxygenase driven by a dual-functional small molecule (DFSM). Using combinations of various P450BM3 variants with DFSMs enabled access to more than half of all possible hydroxylated products from each substrate with excellent regioselectivity (up to >99 %), enantioselectivity (up to >99 % ee), and high total turnover numbers (up to 80963). Crystal structure analysis, molecular dynamic simulations, and theoretical calculations revealed that synergistic effects between exogenous DFSMs and the protein environment controlled regio- and enantioselectivity. This work has implications for exogenous-molecule-modulated enzymatic regiodivergent and enantioselective hydroxylation with potential applications in synthetic chemistry.
Collapse
Affiliation(s)
- Jie Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Shandong Energy Institute, 266101, Qingdao, China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Shandong Energy Institute, 266101, Qingdao, China
| | - Wenhan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yiping Jiang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,Shandong Energy Institute, 266101, Qingdao, China
| | - Zhifeng Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002, Yichang, China
| | - Xiangquan Qin
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,Department of Chemistry, Yanbian University, 133002, Yanji, China
| | - Cong Wang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
| | - Haifeng Zhou
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002, Yichang, China
| | - Longyi Jin
- Department of Chemistry, Yanbian University, 133002, Yanji, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Shandong Energy Institute, 266101, Qingdao, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Shandong Energy Institute, 266101, Qingdao, China
| |
Collapse
|
2
|
Charlton SN, Hayes MA. Oxygenating Biocatalysts for Hydroxyl Functionalisation in Drug Discovery and Development. ChemMedChem 2022; 17:e202200115. [PMID: 35385205 PMCID: PMC9323455 DOI: 10.1002/cmdc.202200115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Indexed: 11/12/2022]
Abstract
C-H oxyfunctionalisation remains a distinct challenge for synthetic organic chemists. Oxygenases and peroxygenases (grouped here as "oxygenating biocatalysts") catalyse the oxidation of a substrate with molecular oxygen or hydrogen peroxide as oxidant. The application of oxygenating biocatalysts in organic synthesis has dramatically increased over the last decade, producing complex compounds with potential uses in the pharmaceutical industry. This review will focus on hydroxyl functionalisation using oxygenating biocatalysts as a tool for drug discovery and development. Established oxygenating biocatalysts, such as cytochrome P450s and flavin-dependent monooxygenases, have widely been adopted for this purpose, but can suffer from low activity, instability or limited substrate scope. Therefore, emerging oxygenating biocatalysts which offer an alternative will also be covered, as well as considering the ways in which these hydroxylation biotransformations can be applied in drug discovery and development, such as late-stage functionalisation (LSF) and in biocatalytic cascades.
Collapse
Affiliation(s)
- Sacha N. Charlton
- School of ChemistryUniversity of Bristol, Cantock's CloseBristolBS8 1TSUK
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery SciencesBiopharmaceuticals R&DAstraZenecaGothenburgSweden
| |
Collapse
|
3
|
Karasawa M, Yonemura K, Stanfield JK, Suzuki K, Shoji O. Ein Designeraußenmembranprotein fördert die Aufnahme von Täuschmolekülen in einen auf Zytochrom P450BM3 beruhenden Ganzzellbiokatalysator. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Masayuki Karasawa
- Department of Chemistry Graduate School of Science Universität Nagoya Furo-cho, Chikusa-ku, Nagoya 464-8602 Japan
| | - Kai Yonemura
- Department of Chemistry Graduate School of Science Universität Nagoya Furo-cho, Chikusa-ku, Nagoya 464-8602 Japan
| | - Joshua Kyle Stanfield
- Department of Chemistry Graduate School of Science Universität Nagoya Furo-cho, Chikusa-ku, Nagoya 464-8602 Japan
| | - Kazuto Suzuki
- Department of Chemistry Graduate School of Science Universität Nagoya Furo-cho, Chikusa-ku, Nagoya 464-8602 Japan
| | - Osami Shoji
- Department of Chemistry Graduate School of Science Universität Nagoya Furo-cho, Chikusa-ku, Nagoya 464-8602 Japan
- Core Research for Evolutional Science and Technology (Japan) Science and Technology Agency 5 Sanbancho Chiyoda-ku, Tokio 102-0075 Japan
| |
Collapse
|
4
|
Karasawa M, Yonemura K, Stanfield JK, Suzuki K, Shoji O. Designer Outer Membrane Protein Facilitates Uptake of Decoy Molecules into a Cytochrome P450BM3-Based Whole-Cell Biocatalyst. Angew Chem Int Ed Engl 2021; 61:e202111612. [PMID: 34704327 DOI: 10.1002/anie.202111612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 11/11/2022]
Abstract
We report an OmpF loop deletion mutant, which improves the cellular uptake of external additives into an Escherichia coli whole-cell biocatalyst. Through co-expression of the OmpF mutant with wild-type P450BM3 in the presence of decoy molecules, the yield of the whole-cell biotransformation of benzene could be considerably improved. Notably, with C7AM-Pip-Phe the yield duodecupled from 5.7% to 70%, with 80% phenol selectivity. The benzylic hydroxylation of alkyl- and cycloalkylbenzenes was also examined, and with the aid of decoy molecules, propylbenzene and tetralin were converted to 1-hydroxylated products with 78% yield and 94% ( R ) ee for propylbenzene and 92% yield and 94% ( S ) ee for tetralin. Our results suggest that both the decoy molecule and substrate traverse the artificial channel, synergistically boosting whole-cell bioconversions.
Collapse
Affiliation(s)
- Masayuki Karasawa
- Nagoya University: Nagoya Daigaku, Chemistry, Science & Agricultural Building SA601, Furo-cho, Chikusa-ku, 464-8602, Nagoya-shi, JAPAN
| | - Kai Yonemura
- Nagoya University: Nagoya Daigaku, Chemistry, Science & Agricultural Building SA601, Furo-cho, Chikusa-ku, 464-8602, Nagoya-shi, JAPAN
| | - Joshua Kyle Stanfield
- Nagoya University: Nagoya Daigaku, Chemistry, Science & Agricultural Building SA601, Furo-cho, Chikusa-ku, 464-8602, Nagoya-shi, JAPAN
| | - Kazuto Suzuki
- Nagoya University: Nagoya Daigaku, Chemistry, Science & Agricultural Building SA601, Furo-cho, Chikusa-ku, 464-8602, Nagoya-shi, JAPAN
| | - Osami Shoji
- Nagoya University, Graduate School of Science, Furo, Chikusa,, 464-8602, Nagoya, JAPAN
| |
Collapse
|
5
|
Li A, Acevedo‐Rocha CG, D'Amore L, Chen J, Peng Y, Garcia‐Borràs M, Gao C, Zhu J, Rickerby H, Osuna S, Zhou J, Reetz MT. Regio- and Stereoselective Steroid Hydroxylation at C7 by Cytochrome P450 Monooxygenase Mutants. Angew Chem Int Ed Engl 2020; 59:12499-12505. [PMID: 32243054 PMCID: PMC7384163 DOI: 10.1002/anie.202003139] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/31/2020] [Indexed: 01/08/2023]
Abstract
Steroidal C7β alcohols and their respective esters have shown significant promise as neuroprotective and anti-inflammatory agents to treat chronic neuronal damage like stroke, brain trauma, and cerebral ischemia. Since C7 is spatially far away from any functional groups that could direct C-H activation, these transformations are not readily accessible using modern synthetic organic techniques. Reported here are P450-BM3 mutants that catalyze the oxidative hydroxylation of six different steroids with pronounced C7 regioselectivities and β stereoselectivities, as well as high activities. These challenging transformations were achieved by a focused mutagenesis strategy and application of a novel technology for protein library construction based on DNA assembly and USER (Uracil-Specific Excision Reagent) cloning. Upscaling reactions enabled the purification of the respective steroidal alcohols in moderate to excellent yields. The high-resolution X-ray structure and molecular dynamics simulations of the best mutant unveil the origin of regio- and stereoselectivity.
Collapse
Affiliation(s)
- Aitao Li
- School of life scienceHubei UniversityState Key Laboratory of Biocatalysis and Enzyme Engineering#368 Youyi RoadWuhan430062P.R. China
| | | | - Lorenzo D'Amore
- Institut de Química Computacional i Catàlisi and Departament de QuímicaUniversitat de GironaCarrer Maria Aurèlia Capmany 6917003GironaCataloniaSpain
| | - Jinfeng Chen
- State Key Laboratory of Bio-organic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesShanghai200032P. R. China
| | - Yaqin Peng
- School of life scienceHubei UniversityState Key Laboratory of Biocatalysis and Enzyme Engineering#368 Youyi RoadWuhan430062P.R. China
| | - Marc Garcia‐Borràs
- Institut de Química Computacional i Catàlisi and Departament de QuímicaUniversitat de GironaCarrer Maria Aurèlia Capmany 6917003GironaCataloniaSpain
| | - Chenghua Gao
- School of life scienceHubei UniversityState Key Laboratory of Biocatalysis and Enzyme Engineering#368 Youyi RoadWuhan430062P.R. China
| | - Jinmei Zhu
- School of life scienceHubei UniversityState Key Laboratory of Biocatalysis and Enzyme Engineering#368 Youyi RoadWuhan430062P.R. China
| | - Harry Rickerby
- LabGeniusG.01-06 Cocoa Studios100 Drummond RdLondonSE16 4DGUK
| | - Sílvia Osuna
- Institut de Química Computacional i Catàlisi and Departament de QuímicaUniversitat de GironaCarrer Maria Aurèlia Capmany 6917003GironaCataloniaSpain
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesShanghai200032P. R. China
| | - Manfred T. Reetz
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470MuelheimGermany
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308P. R. China
| |
Collapse
|
6
|
Li A, Acevedo‐Rocha CG, D'Amore L, Chen J, Peng Y, Garcia‐Borràs M, Gao C, Zhu J, Rickerby H, Osuna S, Zhou J, Reetz MT. Regio‐ and Stereoselective Steroid Hydroxylation at C7 by Cytochrome P450 Monooxygenase Mutants. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Aitao Li
- School of life science Hubei University State Key Laboratory of Biocatalysis and Enzyme Engineering #368 Youyi Road Wuhan 430062 P.R. China
| | | | - Lorenzo D'Amore
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona Carrer Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | - Jinfeng Chen
- State Key Laboratory of Bio-organic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Shanghai 200032 P. R. China
| | - Yaqin Peng
- School of life science Hubei University State Key Laboratory of Biocatalysis and Enzyme Engineering #368 Youyi Road Wuhan 430062 P.R. China
| | - Marc Garcia‐Borràs
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona Carrer Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | - Chenghua Gao
- School of life science Hubei University State Key Laboratory of Biocatalysis and Enzyme Engineering #368 Youyi Road Wuhan 430062 P.R. China
| | - Jinmei Zhu
- School of life science Hubei University State Key Laboratory of Biocatalysis and Enzyme Engineering #368 Youyi Road Wuhan 430062 P.R. China
| | - Harry Rickerby
- LabGenius G.01-06 Cocoa Studios 100 Drummond Rd London SE16 4DG UK
| | - Sílvia Osuna
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona Carrer Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
- ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Shanghai 200032 P. R. China
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Muelheim Germany
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue Tianjin 300308 P. R. China
| |
Collapse
|
7
|
Mertens MAS, Thomas F, Nöth M, Moegling J, El‐Awaad I, Sauer DF, Dhoke GV, Xu W, Pich A, Herres‐Pawlis S, Schwaneberg U. One‐Pot Two‐Step Chemoenzymatic Cascade for the Synthesis of a Bis‐benzofuran Derivative. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900904] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | - Fabian Thomas
- Aachen Institute of Inorganic Chemistry Landoltweg 1 52074 Aachen Germany
| | - Maximilian Nöth
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
- DWI Leipniz‐Institut für Interaktive Materialien e.V. Forckenbeckstr. 50 52056 Aachen Germany
| | - Julian Moegling
- Aachen Institute of Inorganic Chemistry Landoltweg 1 52074 Aachen Germany
| | - Islam El‐Awaad
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
- DWI Leipniz‐Institut für Interaktive Materialien e.V. Forckenbeckstr. 50 52056 Aachen Germany
- Department of Pharmacognosy Faculty of Pharmacy Assiut University 71526 Assiut Egypt
| | - Daniel F. Sauer
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Gaurao V. Dhoke
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Wenjing Xu
- DWI Leipniz‐Institut für Interaktive Materialien e.V. Forckenbeckstr. 50 52056 Aachen Germany
| | - Andrij Pich
- DWI Leipniz‐Institut für Interaktive Materialien e.V. Forckenbeckstr. 50 52056 Aachen Germany
| | | | - Ulrich Schwaneberg
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
- DWI Leipniz‐Institut für Interaktive Materialien e.V. Forckenbeckstr. 50 52056 Aachen Germany
| |
Collapse
|
8
|
Zhou H, Wang B, Wang F, Yu X, Ma L, Li A, Reetz MT. Chemo- and Regioselective Dihydroxylation of Benzene to Hydroquinone Enabled by Engineered Cytochrome P450 Monooxygenase. Angew Chem Int Ed Engl 2018; 58:764-768. [PMID: 30511432 DOI: 10.1002/anie.201812093] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/06/2018] [Indexed: 11/10/2022]
Abstract
Hydroquinone (HQ) is produced commercially from benzene by multi-step Hock-type processes with equivalent amounts of acetone as side-product. We describe an efficient biocatalytic alternative using the cytochrome P450-BM3 monooxygenase. Since the wildtype enzyme does not accept benzene, a semi-rational protein engineering strategy was developed. Highly active mutants were obtained which transform benzene in a one-pot sequence first into phenol and then regioselectively into HQ without any overoxidation. A computational study shows that the chemoselective oxidation of phenol by the P450-BM3 variant A82F/A328F leads to the regioselective formation of an epoxide intermediate at the C3=C4 double bond, which departs from the binding pocket and then undergoes fragmentation in aqueous medium with exclusive formation of HQ. As a practical application, an E. coli designer cell system was constructed, which enables the cascade transformation of benzene into the natural product arbutin, which has anti-inflammatory and anti-bacterial activities.
Collapse
Affiliation(s)
- Hangyu Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Xiaojuan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Manfred T Reetz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Muelheim, Germany.,Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany
| |
Collapse
|
9
|
Zhou H, Wang B, Wang F, Yu X, Ma L, Li A, Reetz MT. Chemo- and Regioselective Dihydroxylation of Benzene to Hydroquinone Enabled by Engineered Cytochrome P450 Monooxygenase. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812093] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hangyu Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources; Hubei Key Laboratory of Industrial Biotechnology; School of Life Sciences; Hubei University; Wuhan 430062 P. R. China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 360015 P. R. China
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources; Hubei Key Laboratory of Industrial Biotechnology; School of Life Sciences; Hubei University; Wuhan 430062 P. R. China
| | - Xiaojuan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources; Hubei Key Laboratory of Industrial Biotechnology; School of Life Sciences; Hubei University; Wuhan 430062 P. R. China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources; Hubei Key Laboratory of Industrial Biotechnology; School of Life Sciences; Hubei University; Wuhan 430062 P. R. China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources; Hubei Key Laboratory of Industrial Biotechnology; School of Life Sciences; Hubei University; Wuhan 430062 P. R. China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Muelheim Germany
- Department of Chemistry; Philipps-University; Hans-Meerwein-Strasse 4 35032 Marburg Germany
| |
Collapse
|
10
|
Li Y, Qin B, Li X, Tang J, Chen Y, Zhou L, You S. Selective Oxidations of Cyperenoic Acid by Slightly Reshaping the Binding Pocket of Cytochrome P450 BM3. ChemCatChem 2018. [DOI: 10.1002/cctc.201701088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuxin Li
- School of Life Science and Biopharmaceutics; Shenyang Pharmaceutical University; 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Bin Qin
- Wuya College of Innovation; Shenyang Pharmaceutical University; 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Xiaoqin Li
- School of Life Science and Biopharmaceutics; Shenyang Pharmaceutical University; 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Jun Tang
- School of Life Science and Biopharmaceutics; Shenyang Pharmaceutical University; 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Yu Chen
- School of Life Science and Biopharmaceutics; Shenyang Pharmaceutical University; 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Lina Zhou
- School of Life Science and Biopharmaceutics; Shenyang Pharmaceutical University; 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Song You
- School of Life Science and Biopharmaceutics; Shenyang Pharmaceutical University; 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| |
Collapse
|
11
|
Dennig A, Weingartner AM, Kardashliev T, Müller CA, Tassano E, Schürmann M, Ruff AJ, Schwaneberg U. An Enzymatic Route to α-Tocopherol Synthons: Aromatic Hydroxylation of Pseudocumene and Mesitylene with P450 BM3. Chemistry 2017; 23:17981-17991. [PMID: 28990705 DOI: 10.1002/chem.201703647] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Indexed: 02/06/2023]
Abstract
Aromatic hydroxylation of pseudocumene (1 a) and mesitylene (1 b) with P450 BM3 yields key phenolic building blocks for α-tocopherol synthesis. The P450 BM3 wild-type (WT) catalyzed selective aromatic hydroxylation of 1 b (94 %), whereas 1 a was hydroxylated to a large extent on benzylic positions (46-64 %). Site-saturation mutagenesis generated a new P450 BM3 mutant, herein named "variant M3" (R47S, Y51W, A330F, I401M), with significantly increased coupling efficiency (3- to 8-fold) and activity (75- to 230-fold) for the conversion of 1 a and 1 b. Additional π-π interactions introduced by mutation A330F improved not only productivity and coupling efficiency, but also selectivity toward aromatic hydroxylation of 1 a (61 to 75 %). Under continuous nicotinamide adenine dinucleotide phosphate recycling, the novel P450 BM3 variant M3 was able to produce the key tocopherol precursor trimethylhydroquinone (3 a; 35 % selectivity; 0.18 mg mL-1 ) directly from 1 a. In the case of 1 b, overoxidation leads to dearomatization and the formation of a valuable p-quinol synthon that can directly serve as an educt for the synthesis of 3 a. Detailed product pattern analysis, substrate docking, and mechanistic considerations support the hypothesis that 1 a binds in an inverted orientation in the active site of P450 BM3 WT, relative to P450 BM3 variant M3, to allow this change in chemoselectivity. This study provides an enzymatic route to key phenolic synthons for α-tocopherols and the first catalytic and mechanistic insights into direct aromatic hydroxylation and dearomatization of trimethylbenzenes with O2 .
Collapse
Affiliation(s)
- Alexander Dennig
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | | | - Tsvetan Kardashliev
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | | | - Erika Tassano
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Martin Schürmann
- DSM Ahead R&D BV/DSM Innovative Synthesis, Post address: P.O. Box 1066, 6160 BB, Geleen, The Netherlands
| | - Anna Joëlle Ruff
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany.,DWI-Leibniz Institut für Interaktive Materialien, Forckenbeckstraße 50, 52074, Aachen, Germany
| |
Collapse
|
12
|
Sarkar MR, Lee JHZ, Bell SG. The Oxidation of Hydrophobic Aromatic Substrates by Using a Variant of the P450 Monooxygenase CYP101B1. Chembiochem 2017; 18:2119-2128. [PMID: 28868671 DOI: 10.1002/cbic.201700316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 11/10/2022]
Abstract
The cytochrome P450 monooxygenase CYP101B1, from a Novosphingobium bacterium is able to bind and oxidise aromatic substrates but at a lower activity and efficiency than norisoprenoids and monoterpenoid esters. Histidine 85 of CYP101B1 aligns with tyrosine 96 of CYP101A1, which, in the latter enzyme forms the only hydrophilic interaction with its substrate, camphor. The histidine residue of CYP101B1 was mutated to phenylalanine with the aim of improving the activity of the enzyme for hydrophobic substrates. The H85F mutant lowered the binding affinity and activity of the enzyme for β-ionone and altered the oxidation selectivity. This variant also showed enhanced affinity and activity towards alkylbenzenes, styrenes and methylnaphthalenes. For example the rate of product formation for acenaphthene oxidation was improved sixfold to 245 nmol per nmol CYP per min. Certain disubstituted naphthalenes and substrates, such as phenylcyclohexane and biphenyls, were oxidised with lower activity by the H85F variant. Variants at H85 (A and G) designed to introduce additional space into the active site so as to accommodate these larger substrates did not improve the oxidation activity. As the H85F mutant of CYP101B1 improved the oxidation of hydrophobic substrates, this residue is likely to be in the substrate binding pocket or the access channel of the enzyme. The side chain of the histidine might interact with the carbonyl groups of the favoured norisoprenoid substrates of CYP101B1.
Collapse
Affiliation(s)
- Md Raihan Sarkar
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Joel H Z Lee
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
13
|
de Ruiter G, Carsch KM, Takase MK, Agapie T. Selectivity of C-H versus C-F Bond Oxygenation by Homo- and Heterometallic Fe 4 , Fe 3 Mn, and Mn 4 Clusters. Chemistry 2017; 23:10744-10748. [PMID: 28658508 PMCID: PMC5659184 DOI: 10.1002/chem.201702302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Indexed: 02/03/2023]
Abstract
A series of tetranuclear [LM3 (HFArPz)3 OM'][OTf]2 (M, M'=Fe or Mn) clusters that displays 3-(2-fluorophenyl)pyrazolate (HFArPz) as bridging ligand is reported. With these complexes, manganese was demonstrated to facilitate C(sp2 )-F bond oxygenation via a putative terminal metal-oxo species. Moreover, the presence of both ortho C(sp2 )-H and C(sp2 )-F bonds in proximity of the apical metal center provided an opportunity to investigate the selectivity of intramolecular C(sp2 )-X bond oxygenation (X=H or F) in these isostructural compounds. With iron as the apical metal center, (M'=Fe) C(sp2 )-F bond oxygenation occur almost exclusively, whereas with manganese (M'=Mn), the opposite reactivity is preferred.
Collapse
Affiliation(s)
- Graham de Ruiter
- Department of Chemistry and Chemical Engineering, California Institute of Technology; MC 127-72, Pasadena, California, 91125, USA
| | - Kurtis M Carsch
- Department of Chemistry and Chemical Engineering, California Institute of Technology; MC 127-72, Pasadena, California, 91125, USA
| | - Michael K Takase
- Department of Chemistry and Chemical Engineering, California Institute of Technology; MC 127-72, Pasadena, California, 91125, USA
| | - Theodor Agapie
- Department of Chemistry and Chemical Engineering, California Institute of Technology; MC 127-72, Pasadena, California, 91125, USA
| |
Collapse
|
14
|
Selective oxidation of aliphatic C-H bonds in alkylphenols by a chemomimetic biocatalytic system. Proc Natl Acad Sci U S A 2017; 114:E5129-E5137. [PMID: 28607077 DOI: 10.1073/pnas.1702317114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Selective oxidation of aliphatic C-H bonds in alkylphenols serves significant roles not only in generation of functionalized intermediates that can be used to synthesize diverse downstream chemical products, but also in biological degradation of these environmentally hazardous compounds. Chemo-, regio-, and stereoselectivity; controllability; and environmental impact represent the major challenges for chemical oxidation of alkylphenols. Here, we report the development of a unique chemomimetic biocatalytic system originated from the Gram-positive bacterium Corynebacterium glutamicum The system consisting of CreHI (for installation of a phosphate directing/anchoring group), CreJEF/CreG/CreC (for oxidation of alkylphenols), and CreD (for directing/anchoring group offloading) is able to selectively oxidize the aliphatic C-H bonds of p- and m-alkylated phenols in a controllable manner. Moreover, the crystal structures of the central P450 biocatalyst CreJ in complex with two representative substrates provide significant structural insights into its substrate flexibility and reaction selectivity.
Collapse
|
15
|
Shoji O, Yanagisawa S, Stanfield JK, Suzuki K, Cong Z, Sugimoto H, Shiro Y, Watanabe Y. Direct Hydroxylation of Benzene to Phenol by Cytochrome P450BM3 Triggered by Amino Acid Derivatives. Angew Chem Int Ed Engl 2017; 56:10324-10329. [DOI: 10.1002/anie.201703461] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Osami Shoji
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
- Core Research for Evolutional Science and Technology (Japan) Science and Technology Agency 5 Sanbancho, Chiyoda-ku Tokyo 102-0075 Japan
| | - Sota Yanagisawa
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Joshua Kyle Stanfield
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Kazuto Suzuki
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Zhiqi Cong
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Hiroshi Sugimoto
- Core Research for Evolutional Science and Technology (Japan) Science and Technology Agency 5 Sanbancho, Chiyoda-ku Tokyo 102-0075 Japan
- RIKEN SPring-8 Center Harima Institute 1-1-1 Kouto Sayo Hyogo 679–5148 Japan
| | - Yoshitsugu Shiro
- RIKEN SPring-8 Center Harima Institute 1-1-1 Kouto Sayo Hyogo 679–5148 Japan
| | - Yoshihito Watanabe
- Research Center for Materials Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| |
Collapse
|
16
|
Shoji O, Yanagisawa S, Stanfield JK, Suzuki K, Cong Z, Sugimoto H, Shiro Y, Watanabe Y. Direct Hydroxylation of Benzene to Phenol by Cytochrome P450BM3 Triggered by Amino Acid Derivatives. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Osami Shoji
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
- Core Research for Evolutional Science and Technology (Japan) Science and Technology Agency 5 Sanbancho, Chiyoda-ku Tokyo 102-0075 Japan
| | - Sota Yanagisawa
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Joshua Kyle Stanfield
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Kazuto Suzuki
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Zhiqi Cong
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Hiroshi Sugimoto
- Core Research for Evolutional Science and Technology (Japan) Science and Technology Agency 5 Sanbancho, Chiyoda-ku Tokyo 102-0075 Japan
- RIKEN SPring-8 Center Harima Institute 1-1-1 Kouto Sayo Hyogo 679–5148 Japan
| | - Yoshitsugu Shiro
- RIKEN SPring-8 Center Harima Institute 1-1-1 Kouto Sayo Hyogo 679–5148 Japan
| | - Yoshihito Watanabe
- Research Center for Materials Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| |
Collapse
|
17
|
Munday SD, Dezvarei S, Lau IC, Bell SG. Examination of Selectivity in the Oxidation of
ortho
‐ and
meta
‐Disubstituted Benzenes by CYP102A1 (P450 Bm3) Variants. ChemCatChem 2017. [DOI: 10.1002/cctc.201700116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Samuel D. Munday
- Department of Chemistry University of Adelaide Adelaide. SA 5005 Australia
| | | | - Ian C.‐K. Lau
- Department of Chemistry University of Adelaide Adelaide. SA 5005 Australia
| | - Stephen G. Bell
- Department of Chemistry University of Adelaide Adelaide. SA 5005 Australia
| |
Collapse
|
18
|
Sarkar MR, Hall EA, Dasgupta S, Bell SG. The Use of Directing Groups Enables the Selective and Efficient Biocatalytic Oxidation of Unactivated Adamantyl C-H Bonds. ChemistrySelect 2016. [DOI: 10.1002/slct.201601615] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Md. Raihan Sarkar
- Department of Chemistry; University Adelaide; Adelaide, SA 5005 Australia
| | - Emma A. Hall
- Department of Chemistry; University Adelaide; Adelaide, SA 5005 Australia
| | - Samrat Dasgupta
- Department of Chemistry; University Adelaide; Adelaide, SA 5005 Australia
| | - Stephen G. Bell
- Department of Chemistry; University Adelaide; Adelaide, SA 5005 Australia
| |
Collapse
|
19
|
Gröger H. Hydroxy-Funktionalisierung nichtaktivierter C-H- und CC-Bindungen: Neue Perspektiven für die Synthese von Alkoholen durch biokatalytische Verfahren. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308556] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Gröger H. Hydroxy Functionalization of Non-Activated CH and CC Bonds: New Perspectives for the Synthesis of Alcohols through Biocatalytic Processes. Angew Chem Int Ed Engl 2014; 53:3067-9. [DOI: 10.1002/anie.201308556] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Indexed: 11/08/2022]
|
21
|
Yang Y, Liu J, Li Z. Engineering of P450pyr Hydroxylase for the Highly Regio- and Enantioselective Subterminal Hydroxylation of Alkanes. Angew Chem Int Ed Engl 2014; 53:3120-4. [DOI: 10.1002/anie.201311091] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 11/09/2022]
|
22
|
Yang Y, Liu J, Li Z. Engineering of P450pyr Hydroxylase for the Highly Regio- and Enantioselective Subterminal Hydroxylation of Alkanes. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201311091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|