1
|
Yi D, Li L, Li M. Subcellular Compartment-Specific Amplified Imaging of Metal Ions via Ribosomal RNA-Regulated DNAzyme Sensors. Angew Chem Int Ed Engl 2025; 64:e202412387. [PMID: 39480115 DOI: 10.1002/anie.202412387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Indexed: 11/02/2024]
Abstract
Although DNAzyme sensors have been widely developed for imaging metal ions, their application in specific subcellular compartments remains challenging due to low spatial controllability. Here we present a locally activatable, DNAzyme-based sensing technology that enables subcellular compartment-specific imaging of metal ions through ribosomal RNA (rRNA) regulated signal amplification. The system leverages a subcellularly encoded rRNA to locally activate DNAzyme-based sensors, and further drives signal amplification via multiple turnover cleavage of molecular beacons, to significantly enhance sensitivity and spatial precision for metal-ion imaging in specific organelles (e.g. mitochondria) or membraneless compartments (e.g. cytosol). Furthermore, we demonstrate that the system allows in situ monitoring of subcellular dynamics of mitochondrial Zn2+ during ischemia and the drug intervention. This study expands the DNAzyme toolbox for investigating the role of subcellular metal-ion dynamics in disease processes.
Collapse
Affiliation(s)
- Deyu Yi
- School of Chemistry and Biological Engineering Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, 30 XueYuan Road, Beijing, 100083, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, China
| | - Mengyuan Li
- School of Chemistry and Biological Engineering Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, 30 XueYuan Road, Beijing, 100083, China
| |
Collapse
|
2
|
He Y, Wang S, Wen J, Feng N, Ma R, Zhang H, Chen G, Chu X, Chen Y. Redesigned Guide DNA Enhanced Clostridium butyricum Argonaute Activity for Amplification-Free and Multiplexed Detection of Pathogens. NANO LETTERS 2024; 24:9750-9759. [PMID: 39052067 DOI: 10.1021/acs.nanolett.4c02723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Clostridium butyricum (CbAgo)-based bioassays are popular due to their programmability and directional cleavage capabilities. However, the relatively compact protein structure of CbAgo limits its cleavage activity (even at the optimal temperature), thus restricting its wider application. Here, we observed that guide DNA (gDNA) with specific structural features significantly enhanced CbAgo cleavage efficiency. Then, we invented a novel gDNA containing DNAzyme segments (gDNAzyme) that substantially enhanced the CbAgo cleavage efficency (by 100%). Using a molecular dynamics simulation system, we found that the augmented cleavage efficiency might be attributed to the large-scale global movement of the PIWI domain of CbAgo and an increased number of cleavage sites. Moreover, this gDNAzyme feature allowed us to create a biosensor that simultaneously and sensitively detected three pathogenic bacteria without DNA extraction and amplification. Our work not only dramatically expands applications of the CbAgo-based biosensor but also provides unique insight into the protein-DNA interactions.
Collapse
Affiliation(s)
- Yongqiang He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Shuai Wang
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
| | - Junping Wen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Niu Feng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ruxiang Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hetong Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Guoxun Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiakun Chu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
3
|
Gao M, Wei D, Chen S, Qin B, Wang Y, Li Z, Yu H. Selection of RNA-Cleaving TNA Enzymes for Cellular Mg 2+ Imaging. Chembiochem 2023; 24:e202200651. [PMID: 36513605 DOI: 10.1002/cbic.202200651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Catalytic DNA-based fluorescent sensors have enabled cellular imaging of metal ions such as Mg2+ . However, natural DNA is prone to nuclease-mediated degradation. Here, we report the in vitro selection of threose nucleic acid enzymes (TNAzymes) with RNA endonuclease activities. One such TNAzyme, T17-22, catalyzes a site-specific RNA cleavage reaction with a kcat of 0.017 min-1 and KM of 675 nM. A fluorescent sensor based on T17-22 responds to an increasing concentration of Mg2+ with a limit of detection at 0.35 mM. This TNAzyme-based sensor also allows cellular imaging of Mg2+ . This work presents the first proof-of-concept demonstration of using a TNA catalyst in cellular metal ion imaging.
Collapse
Affiliation(s)
- Mingmei Gao
- State Key Laboratory of Coordination Chemistry Department of Biomedical Engineering College of Engineering and Applied Sciences Chemistry and Biomedicine Innovation Center (ChemBIC) Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Dongying Wei
- State Key Laboratory of Coordination Chemistry Department of Biomedical Engineering College of Engineering and Applied Sciences Chemistry and Biomedicine Innovation Center (ChemBIC) Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Siqi Chen
- State Key Laboratory of Coordination Chemistry Department of Biomedical Engineering College of Engineering and Applied Sciences Chemistry and Biomedicine Innovation Center (ChemBIC) Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Bohe Qin
- State Key Laboratory of Coordination Chemistry Department of Biomedical Engineering College of Engineering and Applied Sciences Chemistry and Biomedicine Innovation Center (ChemBIC) Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Yueyao Wang
- State Key Laboratory of Coordination Chemistry Department of Biomedical Engineering College of Engineering and Applied Sciences Chemistry and Biomedicine Innovation Center (ChemBIC) Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Zhe Li
- State Key Laboratory of Analytical Chemistry for Life Science Department of Biomedical Engineering College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Hanyang Yu
- State Key Laboratory of Coordination Chemistry Department of Biomedical Engineering College of Engineering and Applied Sciences Chemistry and Biomedicine Innovation Center (ChemBIC) Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
4
|
Chen Y, Zhao R, Li L, Zhao Y. Upconversion Luminescence-Boosted Escape of DNAzyme from Endosomes for Enhanced Gene-Silencing Efficacy. Angew Chem Int Ed Engl 2022; 61:e202206485. [PMID: 35730643 DOI: 10.1002/anie.202206485] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 11/06/2022]
Abstract
Despite the enormous potential of DNAzyme for gene therapy, its efficacy is hampered by the limited endosomal escape capability. Here, we develop a near-infrared (NIR) light-controlled DNAzyme delivery platform to achieve enhanced gene-silencing efficacy. The nanoplatform is composed of therapeutic DNAzyme, photosensitizers (PSs) and upconversion nanoparticles (UCNPs) that can convert NIR light to visible light. The system allows NIR light-activatable generation of cytotoxic reactive oxygen species due to the energy transfer from the UCNPs to PSs, which boosts the endosomal escape of DNAzyme for an improved gene-silencing efficacy. We demonstrate that the nanocomposites represent a promising platform to integrate DNAzyme-based gene therapy with NIR light-triggered photodynamic therapy for combinational tumor treatment. This work highlights a robust approach to combat the current limitations of DNAzyme delivery systems.
Collapse
Affiliation(s)
- Yaoxuan Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rupeng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Zhao J, Di Z, Li L. Spatiotemporally Selective Molecular Imaging via Upconversion Luminescence‐Controlled, DNA‐Based Biosensor Technology. Angew Chem Int Ed Engl 2022; 61:e202204277. [DOI: 10.1002/anie.202204277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhenghan Di
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
6
|
Chen Y, Zhao R, Li L, Zhao Y. Upconversion Luminescence‐Boosted Escape of DNAzyme from Endosomes for Enhanced Gene‐Silencing Efficacy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yoaxuan Chen
- NCNST: National Center for Nanoscience and Technology CAS key Lab CHINA
| | - Rupeng Zhao
- NCNST: National Center for Nanoscience and Technology CAS key Lab CHINA
| | - Lele Li
- National Center for Nanoscience and Technology CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety 11 ZhongGuanCun BeiYiTiao, Haidian District 100190 Beijing CHINA
| | - Yuliang Zhao
- NCNST: National Center for Nanoscience and Technology CAS key Lab CHINA
| |
Collapse
|
7
|
Zhao J, Di Z, Li L. Spatiotemporally Selective Molecular Imaging via Upconversion Luminescence‐Controlled, DNA‐Based Biosensor Technology. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jian Zhao
- NCNST: National Center for Nanoscience and Technology CAS key Lab CHINA
| | - Zhenghan Di
- NCNST: National Center for Nanoscience and Technology CAS key Lab CHINA
| | - Lele Li
- National Center for Nanoscience and Technology CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety 11 ZhongGuanCun BeiYiTiao, Haidian District 100190 Beijing CHINA
| |
Collapse
|
8
|
Guo Y, Yan R, Wang X, Liang G, Yang A, Li J. Near-Infrared Light-Controlled Activation of Adhesive Peptides Regulates Cell Adhesion and Multidifferentiation in Mesenchymal Stem Cells on an Up-Conversion Substrate. NANO LETTERS 2022; 22:2293-2302. [PMID: 35238578 DOI: 10.1021/acs.nanolett.1c04534] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell adhesion and differentiation can be regulated through material engineering, but current methods have low temporal and spatial accuracy to control invivo. Here, we developed an up-conversion nanoparticle (UCNP) substrate to regulate cell adhesion and multidifferentiation in mesenchymal stem cells (MSCs) by near-infrared (NIR) light. First, the cell-adhesive peptide Arg-Gly-Asp (RGD) was conjugated on the surface of UCNPs, and the photocleavage 4-(hydroxymethyl)-3-nitrobenzoic acid (ONA) was connected to RGD. Then, the photoactivated UCNPs were linked to cover glass to form UCNP-substrate. Under the NIR, the up-convert UV from UCNPs triggered the release of ONA and exposed RGD to change the cell-matrix interactions dynamically for cell adhesion and spreading. Moreover, MSCs cultured on UCNP-substrate could be specifically induced to multidifferentiate adipocytes or osteoblasts via different power and periods of NIR irradiation in vitro and in vivo. Our work demonstrates a new way to control cell adhesion and multidifferentiation by light for regeneration medicine.
Collapse
Affiliation(s)
- Yujiao Guo
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Rui Yan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xichao Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Guohai Liang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Anli Yang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jinming Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
9
|
Kanno Y, Zhou Y, Fukuma T, Takahashi Y. Alkaline Phosphatase‐based Electrochemical Analysis for Point‐of‐Care Testing. ELECTROANAL 2021. [DOI: 10.1002/elan.202100294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yusuke Kanno
- Institute of Innovative Research Tokyo Institute of Technology Yokohama Kanagawa 226-8503 Japan
| | - Yuanshu Zhou
- Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi, Kanazawa Ishikawa 920-1192 Japan
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi, Kanazawa Ishikawa 920-1192 Japan
| | - Yasufumi Takahashi
- Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi, Kanazawa Ishikawa 920-1192 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) Saitama 332-0012 Japan
| |
Collapse
|
10
|
Yi D, Zhao J, Li L. An Enzyme‐Activatable Engineered DNAzyme Sensor for Cell‐Selective Imaging of Metal Ions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Deyu Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100190 China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100190 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
11
|
Yi D, Zhao J, Li L. An Enzyme‐Activatable Engineered DNAzyme Sensor for Cell‐Selective Imaging of Metal Ions. Angew Chem Int Ed Engl 2021; 60:6300-6304. [DOI: 10.1002/anie.202015979] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Deyu Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100190 China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100190 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
12
|
Moon WJ, Yang Y, Liu J. Zn 2+ -Dependent DNAzymes: From Solution Chemistry to Analytical, Materials and Therapeutic Applications. Chembiochem 2020; 22:779-789. [PMID: 33007113 DOI: 10.1002/cbic.202000586] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/01/2020] [Indexed: 12/20/2022]
Abstract
Since 1994, deoxyribozymes or DNAzymes have been in vitro selected to catalyze various types of reactions. Metal ions play a critical role in DNAzyme catalysis, and Zn2+ is a very important one among them. Zn2+ has good biocompatibility and can be used for intracellular applications. Chemically, Zn2+ is a Lewis acid and it can bind to both the phosphate backbone and the nucleobases of DNA. Zn2+ undergoes hydrolysis even at neutral pH, and the partially hydrolyzed polynuclear complexes can affect the interactions with DNA. These features have made Zn2+ a unique cofactor for DNAzyme reactions. This review summarizes Zn2+ -dependent DNAzymes with an emphasis on RNA-/DNA-cleaving reactions. A key feature is the sharp Zn2+ concentration and pH-dependent activity for many of the DNAzymes. The applications of these DNAzymes as biosensors for Zn2+ , as therapeutic agents to cleave intracellular RNA, and as chemical biology tools to manipulate DNA are discussed. Future studies can focus on the selection of new DNAzymes with improved performance and detailed biochemical characterizations to understand the role of Zn2+ , which can facilitate practical applications of Zn2+ -dependent DNAzymes.
Collapse
Affiliation(s)
- Woohyun J Moon
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Yongjie Yang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.,Department of Food and Biological Science, College of Agricultural, Yanbian University, Yanbian Chaoxianzuzizhizhou, Yanji, 133002, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.,Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
13
|
Takezawa Y, Hu L, Nakama T, Shionoya M. Sharp Switching of DNAzyme Activity through the Formation of a Cu
II
‐Mediated Carboxyimidazole Base Pair. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Lingyun Hu
- Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Takahiro Nakama
- Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
14
|
Takezawa Y, Hu L, Nakama T, Shionoya M. Sharp Switching of DNAzyme Activity through the Formation of a Cu
II
‐Mediated Carboxyimidazole Base Pair. Angew Chem Int Ed Engl 2020; 59:21488-21492. [DOI: 10.1002/anie.202009579] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Lingyun Hu
- Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Takahiro Nakama
- Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
15
|
Zhou Z, Brennan JD, Li Y. A Multi‐component All‐DNA Biosensing System Controlled by a DNAzyme. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhixue Zhou
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - John D. Brennan
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton ON L8S 4O3 Canada
| | - Yingfu Li
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| |
Collapse
|
16
|
Zhou Z, Brennan JD, Li Y. A Multi‐component All‐DNA Biosensing System Controlled by a DNAzyme. Angew Chem Int Ed Engl 2020; 59:10401-10405. [PMID: 32207868 DOI: 10.1002/anie.202002019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Zhixue Zhou
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - John D. Brennan
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton ON L8S 4O3 Canada
| | - Yingfu Li
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| |
Collapse
|
17
|
Xiong M, Yang Z, Lake RJ, Li J, Hong S, Fan H, Zhang XB, Lu Y. DNAzyme-Mediated Genetically Encoded Sensors for Ratiometric Imaging of Metal Ions in Living Cells. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 132:1907-1912. [PMID: 36312441 PMCID: PMC9615436 DOI: 10.1002/ange.201912514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 09/07/2024]
Abstract
Genetically encoded fluorescent proteins (FPs) have been used for metal ion detection. However, their applications are restricted to a limited number of metal ions owing to the lack of available metal-binding proteins or peptides that can be fused to FPs and the difficulty in transforming the binding of metal ions into a change of fluorescent signal. We report herein the use of Mg2+-specific 10-23 or Zn2+-specific 8-17 RNA-cleaving DNAzymes to regulate the expression of FPs as a new class of ratiometric fluorescent sensors for metal ions. Specifically, we demonstrate the use of DNAzymes to suppress the expression of Clover2, a variant of the green FP (GFP), by cleaving the mRNA of Clover2, while the expression of Ruby2, a mutant of the red FP (RFP), is not affected. The Mg2+ or Zn2+ in HeLa cells can be detected using both confocal imaging and flow cytometry. Since a wide variety of metal-specific DNAzymes can be obtained, this method can likely be applied to imaging many other metal ions, expanding the range of the current genetically encoded fluorescent protein-based sensors.
Collapse
Affiliation(s)
- Mengyi Xiong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University Changsha 410082 (P. R. China)
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| | - Zhenglin Yang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| | - Ryan J Lake
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| | - Junjie Li
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| | - Shanni Hong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| | - Huanhuan Fan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University Changsha 410082 (P. R. China)
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University Changsha 410082 (P. R. China)
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| |
Collapse
|
18
|
Xiong M, Yang Z, Lake RJ, Li J, Hong S, Fan H, Zhang XB, Lu Y. DNAzyme-Mediated Genetically Encoded Sensors for Ratiometric Imaging of Metal Ions in Living Cells. Angew Chem Int Ed Engl 2019; 59:1891-1896. [PMID: 31746514 DOI: 10.1002/anie.201912514] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 12/21/2022]
Abstract
Genetically encoded fluorescent proteins (FPs) have been used for metal ion detection. However, their applications are restricted to a limited number of metal ions owing to the lack of available metal-binding proteins or peptides that can be fused to FPs and the difficulty in transforming the binding of metal ions into a change of fluorescent signal. We report herein the use of Mg2+ -specific 10-23 or Zn2+ -specific 8-17 RNA-cleaving DNAzymes to regulate the expression of FPs as a new class of ratiometric fluorescent sensors for metal ions. Specifically, we demonstrate the use of DNAzymes to suppress the expression of Clover2, a variant of the green FP (GFP), by cleaving the mRNA of Clover2, while the expression of Ruby2, a mutant of the red FP (RFP), is not affected. The Mg2+ or Zn2+ in HeLa cells can be detected using both confocal imaging and flow cytometry. Since a wide variety of metal-specific DNAzymes can be obtained, this method can likely be applied to imaging many other metal ions, expanding the range of the current genetically encoded fluorescent protein-based sensors.
Collapse
Affiliation(s)
- Mengyi Xiong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, P. R. China.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhenglin Yang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ryan J Lake
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Junjie Li
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shanni Hong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huanhuan Fan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, P. R. China.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, P. R. China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
19
|
Samani SE, Chang D, McConnell EM, Rothenbroker M, Filipe CDM, Li Y. Highly Sensitive RNA-Cleaving DNAzyme Sensors from Surface-to-Surface Product Enrichment. Chembiochem 2019; 21:632-637. [PMID: 31544309 DOI: 10.1002/cbic.201900575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Indexed: 12/13/2022]
Abstract
The engineering of easy-to-use biosensors with ultra-low detection sensitivity remains a major challenge. Herein, we report a simple approach for creating such sensors through the use of an RNA-cleaving DNAzyme (RcD) and a strategy designed to concentrate its cleavage product significantly. The assay uses micron-sized beads loaded with a target-responsive RcD and a paper strip containing a microzone covered with a DNA oligonucleotide capable of capturing the cleavage product of the RcD through Watson-Crick hybridization. Placing the beads and the paper strip in a target-containing test sample allows the bead-bound RcD molecules to undergo target-induced RNA cleavage, releasing a DNA fragment that is captured by the paper strip. This strategy, though simple, is very effective in achieving high levels of detection sensitivity, being able to enrich the concentration of the cleavage product by three orders of magnitude. It is also compatible with both fluorescence-based and colorimetric reporting mechanisms. This work provides a simple platform for developing ultrasensitive biosensors that take advantage of the widely available RcDs as molecular recognition elements.
Collapse
Affiliation(s)
- Sahar Esmaeili Samani
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Dingran Chang
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Erin M McConnell
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Meghan Rothenbroker
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
20
|
Lin Y, Yang Z, Lake RJ, Zheng C, Lu Y. Enzyme‐Mediated Endogenous and Bioorthogonal Control of a DNAzyme Fluorescent Sensor for Imaging Metal Ions in Living Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yao Lin
- Department of ChemistryDepartment of BiochemistryUniversity of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu Sichuan 610064 China
| | - Zhenglin Yang
- Department of ChemistryDepartment of BiochemistryUniversity of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Ryan J. Lake
- Department of ChemistryDepartment of BiochemistryUniversity of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu Sichuan 610064 China
| | - Yi Lu
- Department of ChemistryDepartment of BiochemistryUniversity of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| |
Collapse
|
21
|
Lin Y, Yang Z, Lake RJ, Zheng C, Lu Y. Enzyme-Mediated Endogenous and Bioorthogonal Control of a DNAzyme Fluorescent Sensor for Imaging Metal Ions in Living Cells. Angew Chem Int Ed Engl 2019; 58:17061-17067. [PMID: 31529664 PMCID: PMC7174831 DOI: 10.1002/anie.201910343] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Indexed: 11/09/2022]
Abstract
Bioorthogonal control of metal-ion sensors for imaging metal ions in living cells is important for understanding the distribution and fluctuation of metal ions. Reported here is the endogenous and bioorthogonal activation of a DNAzyme fluorescent sensor containing an 18-base pair recognition site of a homing endonuclease (I-SceI), which is found by chance only once in 7×1010 bp of genomic sequences, and can thus form a near bioorthogonal pair with I-SceI for DNAzyme activation with minimal effect on living cells. Once I-SceI is expressed inside cells, it cleaves at the recognition site, allowing the DNAzyme to adopt its active conformation. The activated DNAzyme sensor is then able to specifically catalyze cleavage of a substrate strand in the presence of Mg2+ to release the fluorophore-labeled DNA fragment and produce a fluorescent turn-on signal for Mg2+ . Thus I-SceI bioorthogonally activates the 10-23 DNAzyme for imaging of Mg2+ in HeLa cells.
Collapse
Affiliation(s)
- Yao Lin
- Department of Chemistry, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhenglin Yang
- Department of Chemistry, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ryan J. Lake
- Department of Chemistry, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
22
|
Xiao L, Gu C, Xiang Y. Orthogonal Activation of RNA‐Cleaving DNAzymes in Live Cells by Reactive Oxygen Species. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lu Xiao
- Department of Chemistry Beijing Key Laboratory for Microanalytical Methods and Instrumentation Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education) Tsinghua University Beijing 100084 China
| | - Chunmei Gu
- Department of Chemistry Beijing Key Laboratory for Microanalytical Methods and Instrumentation Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education) Tsinghua University Beijing 100084 China
| | - Yu Xiang
- Department of Chemistry Beijing Key Laboratory for Microanalytical Methods and Instrumentation Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education) Tsinghua University Beijing 100084 China
| |
Collapse
|
23
|
Xiao L, Gu C, Xiang Y. Orthogonal Activation of RNA-Cleaving DNAzymes in Live Cells by Reactive Oxygen Species. Angew Chem Int Ed Engl 2019; 58:14167-14172. [PMID: 31314942 DOI: 10.1002/anie.201908105] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Indexed: 02/05/2023]
Abstract
RNA-cleaving DNAzymes are useful tools for intracellular metal-ion sensing and gene regulation. Incorporating stimuli-responsive modifications into these DNAzymes enables their activities to be spatiotemporally and chemically controlled for more precise applications. Despite the successful development of many caged DNAzymes for light-induced activation, DNAzymes that can be intracellularly activated by chemical inputs of biological importance, such as reactive oxygen species (ROS), are still scarce. ROS like hydrogen peroxide (H2 O2 ) and hypochlorite (HClO) are critical mediators of oxidative stress-related cell signaling and dysregulation including activation of immune system as well as progression of diseases and aging. Herein, we report ROS-activable DNAzymes by introducing phenylboronate and phosphorothioate modifications to the Zn2+ -dependent 8-17 DNAzyme. These ROS-activable DNAzymes were orthogonally activated by H2 O2 and HClO inside live human and mouse cells.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Chunmei Gu
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
24
|
O'Hagan MP, Morales JC, Galan MC. Binding and Beyond: What Else Can G-Quadruplex Ligands Do? European J Org Chem 2019. [DOI: 10.1002/ejoc.201900692] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Juan C. Morales
- Instituto de Parasitología y Biomedicina “López Neyra”; Consejo Superior de Investigaciones Científicas (CSIC); PTS Granada; Avenida del Conocimiento 17 18016 Armilla, Granada Spain
| | - M. Carmen Galan
- School of Chemistry; University of Bristol; Cantock's Close BS8 1TS UK
| |
Collapse
|
25
|
Qing Z, Xu J, Hu J, Zheng J, He L, Zou Z, Yang S, Tan W, Yang R. In Situ Amplification‐Based Imaging of RNA in Living Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812449] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Zhihe Qing
- School of Chemistry and Food Engineering Changsha University of Science and Technology Changsha 410114 China
| | - Jingyuan Xu
- School of Chemistry and Food Engineering Changsha University of Science and Technology Changsha 410114 China
| | - Jinlei Hu
- School of Chemistry and Food Engineering Changsha University of Science and Technology Changsha 410114 China
| | - Jing Zheng
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics Hunan University Changsha 410082 China
| | - Lei He
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics Hunan University Changsha 410082 China
| | - Zhen Zou
- School of Chemistry and Food Engineering Changsha University of Science and Technology Changsha 410114 China
| | - Sheng Yang
- School of Chemistry and Food Engineering Changsha University of Science and Technology Changsha 410114 China
| | - Weihong Tan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics Hunan University Changsha 410082 China
| | - Ronghua Yang
- School of Chemistry and Food Engineering Changsha University of Science and Technology Changsha 410114 China
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics Hunan University Changsha 410082 China
| |
Collapse
|
26
|
In Situ Amplification‐Based Imaging of RNA in Living Cells. Angew Chem Int Ed Engl 2019; 58:11574-11585. [DOI: 10.1002/anie.201812449] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/24/2019] [Indexed: 12/11/2022]
|
27
|
Yan Z, Qin H, Ren J, Qu X. Photocontrolled Multidirectional Differentiation of Mesenchymal Stem Cells on an Upconversion Substrate. Angew Chem Int Ed Engl 2018; 57:11182-11187. [DOI: 10.1002/anie.201803939] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Zhengqing Yan
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 China
- University of Chinese Academy of Sciences; Beijing 100039 China
| | - Hongshuang Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 China
| |
Collapse
|
28
|
Yan Z, Qin H, Ren J, Qu X. Photocontrolled Multidirectional Differentiation of Mesenchymal Stem Cells on an Upconversion Substrate. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zhengqing Yan
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 China
- University of Chinese Academy of Sciences; Beijing 100039 China
| | - Hongshuang Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 China
| |
Collapse
|
29
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemical Control of Biological Processes in Cells and Animals. Angew Chem Int Ed Engl 2018; 57:2768-2798. [PMID: 28521066 PMCID: PMC6026863 DOI: 10.1002/anie.201700171] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/06/2017] [Indexed: 12/13/2022]
Abstract
Biological processes are naturally regulated with high spatial and temporal control, as is perhaps most evident in metazoan embryogenesis. Chemical tools have been extensively utilized in cell and developmental biology to investigate cellular processes, and conditional control methods have expanded applications of these technologies toward resolving complex biological questions. Light represents an excellent external trigger since it can be controlled with very high spatial and temporal precision. To this end, several optically regulated tools have been developed and applied to living systems. In this review we discuss recent developments of optochemical tools, including small molecules, peptides, proteins, and nucleic acids that can be irreversibly or reversibly controlled through light irradiation, with a focus on applications in cells and animals.
Collapse
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Taylor Courtney
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Yuta Naro
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| |
Collapse
|
30
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemische Steuerung biologischer Vorgänge in Zellen und Tieren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201700171] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Taylor Courtney
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Yuta Naro
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Alexander Deiters
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
31
|
Abstract
Nucleic acid enzymes require metal ions for activity, and many recently discovered enzymes can use multiple metals, either binding to the scissile phosphate or also playing an allosteric role.
Collapse
Affiliation(s)
- Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Juewen Liu
- Department of Chemistry
- Water Institute, and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|
32
|
Li X, Yang J, Xie J, Jiang B, Yuan R, Xiang Y. Cascaded signal amplification via target-triggered formation of aptazyme for sensitive electrochemical detection of ATP. Biosens Bioelectron 2017; 102:296-300. [PMID: 29156404 DOI: 10.1016/j.bios.2017.11.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/08/2017] [Accepted: 11/01/2017] [Indexed: 11/29/2022]
Abstract
The construction of reliable sensors for adenosine triphosphate (ATP) detection gains increasing interest because of its important roles in various enzymatic activities and biological processes. Based on a cascaded, significant signal amplification approach by the integration of the aptazymes and catalytic hairpin assembly (CHA), we have developed a sensitive electrochemical sensor for the detection of ATP. The target ATP leads to the conformational change of the aptazyme sequences and their association with the hairpin substrates to form active aptazymes, in which the hairpin substrates are cyclically cleaved by the metal ion cofactors in buffer to release the enzymatic sequences that can also bind the hairpin substrates to generate active DNAzymes. The catalytic cleavage of the hairpin substrates in the aptazymes/DNAzymes thus results in the generation of a large number of intermediate sequences. Subsequently, these intermediate sequences trigger catalytic capture of many methylene blue-tagged signal sequences on the electrode surface through CHA, producing significantly amplified current response for sensitive detection of ATP at 0.6nM. Besides, the developed sensor can discriminate ATP from analogous interference molecules and be applied to human serum samples, making the sensor a useful addition to the arena for sensitive detection of small molecules.
Collapse
Affiliation(s)
- Xia Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jianmei Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jiaqing Xie
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Bingying Jiang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
33
|
Nakano SI, Watabe T, Sugimoto N. Modulation of Ribozyme and Deoxyribozyme Activities Using Tetraalkylammonium Ions. Chemphyschem 2017; 18:3614-3619. [DOI: 10.1002/cphc.201700882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/13/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Shu-ichi Nakano
- Department of Nanobiochemistry; Faculty of Frontiers of Innovative Research in Science and Technology (FIRST); Konan University; 7-1-20, Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
| | - Takaaki Watabe
- Department of Nanobiochemistry; Faculty of Frontiers of Innovative Research in Science and Technology (FIRST); Konan University; 7-1-20, Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
- Department of Chemistry; Faculty of Science and Engineering; Konan University; 8-9-1, Okamoto, Higashinada-ku Kobe 658-8501 Japan
| | - Naoki Sugimoto
- Department of Nanobiochemistry; Faculty of Frontiers of Innovative Research in Science and Technology (FIRST); Konan University; 7-1-20, Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20, Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
| |
Collapse
|
34
|
Wu Z, Fan H, Satyavolu NSR, Wang W, Lake R, Jiang JH, Lu Y. Imaging Endogenous Metal Ions in Living Cells Using a DNAzyme-Catalytic Hairpin Assembly Probe. Angew Chem Int Ed Engl 2017; 56:8721-8725. [PMID: 28557357 PMCID: PMC5814595 DOI: 10.1002/anie.201703540] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/03/2017] [Indexed: 12/16/2022]
Abstract
DNAzymes are a promising platform for metal ion detection, and a few DNAzyme-based sensors have been reported to detect metal ions inside cells. However, these methods required an influx of metal ions to increase their concentrations for detection. To address this major issue, the design of a catalytic hairpin assembly (CHA) reaction to amplify the signal from photocaged Na+ -specific DNAzyme to detect endogenous Na+ inside cells is reported. Upon light activation and in the presence of Na+ , the NaA43 DNAzyme cleaves its substrate strand and releases a product strand, which becomes an initiator that trigger the subsequent CHA amplification reaction. This strategy allows detection of endogenous Na+ inside cells, which has been demonstrated by both fluorescent imaging of individual cells and flow cytometry of the whole cell population. This method can be generally applied to detect other endogenous metal ions and thus contribute to deeper understanding of the role of metal ions in biological systems.
Collapse
Affiliation(s)
- Zhenkun Wu
- State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics Institute of Chemical Biology and Nanomedicine and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Huanhuan Fan
- State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics Institute of Chemical Biology and Nanomedicine and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | | | - WenJing Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry & Chemical Engineering, Nanjing University, N, anjing, 210093, P. R. China
| | - Ryan Lake
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Jian-Hui Jiang
- State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics Institute of Chemical Biology and Nanomedicine and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
35
|
Wu Z, Fan H, Satyavolu NSR, Wang W, Lake R, Jiang JH, Lu Y. Imaging Endogenous Metal Ions in Living Cells Using a DNAzyme-Catalytic Hairpin Assembly Probe. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703540] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhenkun Wu
- State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics Institute of Chemical Biology and Nanomedicine and College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana Illinois 61801 USA
| | - Huanhuan Fan
- State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics Institute of Chemical Biology and Nanomedicine and College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana Illinois 61801 USA
| | | | - WenJing Wang
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana Illinois 61801 USA
- State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry & Chemical Engineering; Nanjing University, N; anjing 210093 P. R. China
| | - Ryan Lake
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana Illinois 61801 USA
| | - Jian-Hui Jiang
- State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics Institute of Chemical Biology and Nanomedicine and College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Yi Lu
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana Illinois 61801 USA
| |
Collapse
|
36
|
Wang W, Satyavolu NSR, Wu Z, Zhang JR, Zhu JJ, Lu Y. Near-Infrared Photothermally Activated DNAzyme-Gold Nanoshells for Imaging Metal Ions in Living Cells. Angew Chem Int Ed Engl 2017; 56:6798-6802. [PMID: 28471018 PMCID: PMC5861726 DOI: 10.1002/anie.201701325] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/30/2017] [Indexed: 12/31/2022]
Abstract
DNAzymes have enjoyed success as metal ion sensors outside cells. Their susceptibility to metal-dependent cleavage during delivery into cells has limited their intracellular applications. To overcome this limitation, a near-infrared (NIR) photothermal activation method is presented for controlling DNAzyme activity in living cells. The system consists of a three-stranded DNAzyme precursor (TSDP), the hybridization of which prevents the DNAzyme from being active. After conjugating the TSDP onto gold nanoshells and upon NIR illumination, the increased temperature dehybridizes the TSDP to release the active DNAzyme, which then carries out metal-ion-dependent cleavage, resulting in releasing the cleaved product containing a fluorophore. Using this construct, detecting Zn2+ in living HeLa cells is demonstrated. This method has expanded the DNAzyme versatility for detecting metal ions in biological systems under NIR light that exhibits lower phototoxicity and higher tissue penetration ability.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- State Key Laboratory of Analytical for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, P.R. China
| | | | - Zhenkun Wu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P.R. China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, P.R. China
- School of Chemistry and Life Science, Nanjing University, Jinling College, Nanjing, Jiangsu, 210089, P.R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, P.R. China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
37
|
Wang W, Satyavolu NSR, Wu Z, Zhang JR, Zhu JJ, Lu Y. Near-Infrared Photothermally Activated DNAzyme-Gold Nanoshells for Imaging Metal Ions in Living Cells. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701325] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenjing Wang
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
- State Key Laboratory of Analytical for Life Science; School of Chemistry & Chemical Engineering; Nanjing University; Nanjing Jiangsu 210093 P.R. China
| | | | - Zhenkun Wu
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
- State Key Laboratory of Chemo/BioSensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha Hunan 410082 P.R. China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical for Life Science; School of Chemistry & Chemical Engineering; Nanjing University; Nanjing Jiangsu 210093 P.R. China
- School of Chemistry and Life Science; Nanjing University, Jinling College; Nanjing Jiangsu 210089 P.R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical for Life Science; School of Chemistry & Chemical Engineering; Nanjing University; Nanjing Jiangsu 210093 P.R. China
| | - Yi Lu
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| |
Collapse
|
38
|
|
39
|
Liu M, Zhang Q, Chang D, Gu J, Brennan JD, Li Y. A DNAzyme Feedback Amplification Strategy for Biosensing. Angew Chem Int Ed Engl 2017; 56:6142-6146. [PMID: 28370773 DOI: 10.1002/anie.201700054] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/05/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Meng Liu
- Department of Biochemistry and Biomedical Sciences and Chemistry & Chemical Biology; McMaster University; 1280 Main Street West Hamilton ON L8S 4K1 Canada
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton ON L8S 4L8 Canada
| | - Qiang Zhang
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton ON L8S 4L8 Canada
| | - Dingran Chang
- Department of Biochemistry and Biomedical Sciences and Chemistry & Chemical Biology; McMaster University; 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences and Chemistry & Chemical Biology; McMaster University; 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - John D. Brennan
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton ON L8S 4L8 Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences and Chemistry & Chemical Biology; McMaster University; 1280 Main Street West Hamilton ON L8S 4K1 Canada
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton ON L8S 4L8 Canada
| |
Collapse
|
40
|
Tan Y, Qiu J, Cui M, Wei X, Zhao M, Qiu B, Chen G. An immobilization free DNAzyme based electrochemical biosensor for lead determination. Analyst 2016; 141:1121-6. [DOI: 10.1039/c5an02114f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A simple but sensitive immobilization free DNAzyme based electrochemical biosensor has been proposed based on the different diffusivity and electrostatic repulsion between long and short DNA on the negatively charged ITO electrode.
Collapse
Affiliation(s)
- Yue Tan
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Fuzhou University
- Fuzhou
- China
| | - Jiazhi Qiu
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Fuzhou University
- Fuzhou
- China
| | - Meiying Cui
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Fuzhou University
- Fuzhou
- China
| | - Xiaofeng Wei
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Fuzhou University
- Fuzhou
- China
| | - Mengmeng Zhao
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Fuzhou University
- Fuzhou
- China
| | - Bin Qiu
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Fuzhou University
- Fuzhou
- China
| | - Guonan Chen
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Fuzhou University
- Fuzhou
- China
| |
Collapse
|
41
|
Abstract
Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed.
Collapse
Affiliation(s)
- Yongxi Zhao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Feng Chen
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Qian Li
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Chunhai Fan
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China.,School of Life Science & Technology, ShanghaiTech University , Shanghai 200031, China
| |
Collapse
|
42
|
|
43
|
|
44
|
Mao Y, Liu M, Tram K, Gu J, Salena BJ, Jiang Y, Li Y. Optimal DNA templates for rolling circle amplification revealed by in vitro selection. Chemistry 2015; 21:8069-74. [PMID: 25877998 DOI: 10.1002/chem.201500994] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Indexed: 01/21/2023]
Abstract
Rolling circle amplification (RCA) has been widely used as an isothermal DNA amplification technique for diagnostic and bioanalytical applications. Because RCA involves repeated copying of the same circular DNA template by a DNA polymerase thousands of times, we hypothesized there exist DNA sequences that can function as optimal templates and produce more DNA amplicons within an allocated time. Herein we describe an in vitro selection effort conducted to search from a random sequence DNA pool for such templates for phi29 DNA polymerase, a frequently used polymerase for RCA. Diverse DNA molecules were isolated and they were characterized by richness in adenosine (A) and cytidine (C) nucleotides. The top ranked sequences exhibit superior RCA efficiency and the use of these templates for RCA results in significantly improved detection sensitivity. AC-rich sequences are expected to find useful applications for setting up effective RCA assays for biological sensing.
Collapse
Affiliation(s)
- Yu Mao
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1 (Canada).,The Ministry-Province Jointly Constructed Base for State Key Laboratory, Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055 (P. R. China).,School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055 (P. R. China)
| | - Meng Liu
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1 (Canada)
| | - Kha Tram
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1 (Canada)
| | - Jimmy Gu
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1 (Canada)
| | - Bruno J Salena
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1 (Canada)
| | - Yuyang Jiang
- The Ministry-Province Jointly Constructed Base for State Key Laboratory, Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055 (P. R. China).
| | - Yingfu Li
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1 (Canada).
| |
Collapse
|