1
|
Hou C, Chang YF, Yao X. Supramolecular Adhesive Materials with Antimicrobial Activity for Emerging Biomedical Applications. Pharmaceutics 2022; 14:1616. [PMID: 36015240 PMCID: PMC9414438 DOI: 10.3390/pharmaceutics14081616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 12/10/2022] Open
Abstract
Traditional adhesives or glues such as cyanoacrylates, fibrin glue, polyethylene glycol, and their derivatives have been widely used in biomedical fields. However, they still suffer from numerous limitations, including the mechanical mismatch with biological tissues, weak adhesion on wet surfaces, biological incompatibility, and incapability of integrating desired multifunction. In addition to adaptive mechanical and adhesion properties, adhesive biomaterials should be able to integrate multiple functions such as stimuli-responsiveness, control-releasing of small or macromolecular therapeutic molecules, hosting of various cells, and programmable degradation to fulfill the requirements in the specific biological systems. Therefore, rational molecular engineering and structural designs are required to facilitate the development of functional adhesive materials. This review summarizes and analyzes the current supramolecular design strategies of representative adhesive materials, serving as a general guide for researchers seeking to develop novel adhesive materials for biomedical applications.
Collapse
Affiliation(s)
- Changshun Hou
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR 999077, China;
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR 999077, China;
| |
Collapse
|
2
|
Khan F, Das S. Modified Low Molecular Weight Pure and Engineered Gels: A Review of Strategies towards Their Development. ChemistrySelect 2022. [DOI: 10.1002/slct.202200205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Finaz Khan
- Department of Chemistry Amity Institute of Applied Sciences Amity University Kolkata Major Arterial Road, Action Area II, Kadampukur Village, Rajarhat, Newtown West Bengal 700135 India
| | - Susmita Das
- Department of Chemistry Amity Institute of Applied Sciences Amity University Kolkata Major Arterial Road, Action Area II, Kadampukur Village, Rajarhat, Newtown West Bengal 700135 India
| |
Collapse
|
3
|
Omar J, Ponsford D, Dreiss CA, Lee TC, Loh XJ. Supramolecular Hydrogels: Design Strategies and Contemporary Biomedical Applications. Chem Asian J 2022; 17:e202200081. [PMID: 35304978 DOI: 10.1002/asia.202200081] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Indexed: 12/19/2022]
Abstract
Self-assembly of supramolecular hydrogels is driven by dynamic, non-covalent interactions between molecules. Considerable research effort has been exerted to fabricate and optimise supramolecular hydrogels that display shear-thinning, self-healing, and reversibility, in order to develop materials for biomedical applications. This review provides a detailed overview of the chemistry behind the dynamic physicochemical interactions that sustain hydrogel formation (hydrogen bonding, hydrophobic interactions, ionic interactions, metal-ligand coordination, and host-guest interactions). Novel design strategies and methodologies to create supramolecular hydrogels are highlighted, which offer promise for a wide range of applications, specifically drug delivery, wound healing, tissue engineering and 3D bioprinting. To conclude, future prospects are briefly discussed, and consideration given to the steps required to ultimately bring these biomaterials into clinical settings.
Collapse
Affiliation(s)
- Jasmin Omar
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK.,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Daniel Ponsford
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK
| | - Tung-Chun Lee
- Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Materials Science and Engineering, National University of Singapore, Singapore
| |
Collapse
|
4
|
Gene Expression of Mouse Hippocampal Stem Cells Grown in a Galactose-Derived Molecular Gel Compared to In Vivo and Neurospheres. Processes (Basel) 2021. [DOI: 10.3390/pr9040716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: N-heptyl-D-galactonamide (GalC7) is a small synthetic carbohydrate derivative that forms a biocompatible supramolecular hydrogel. In this study, the objective was to analyze more in-depth how neural cells differentiate in contact with GalC7. Method: Direct (ex vivo) cells of the fresh hippocampus and culture (In vitro) of the primary cells were investigated. In vitro, investigation performed under three conditions: on culture in neurospheres for 19 days, on culture in GalC7 gel for 7 days, and on culture in both neurospheres and GalC7 gel. Total RNA was isolated with TRIzol from each group, Sox8, Sox9, Sox10, Dcx, and Neurod1 expression levels were measured by qPCR. Result: Sox8 and Sox10, oligodendrocyte markers, and Sox9, an astrocyte marker, were expressed at a much higher level after 7 days of culture in GalC7 hydrogel compared to all other conditions. Dcx, a marker of neurogenesis, and Neurod1, a marker of neuronal differentiation, were expressed at better levels in the GalC7 gel culture compared to the neurosphere. Conclusions: These results show that the GalC7 hydrogel brings different and interesting conditions for inducing the differentiation and maturation of neural progenitor cells compared with polymer-based scaffolds or cell-only conditions. The differences observed open new perspectives in tissue engineering, induction, and transcript analysis.
Collapse
|
5
|
Patil NA, Kandasubramanian B. Functionalized polylysine biomaterials for advanced medical applications: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110248] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Vieira VMP, Lima AC, de Jong M, Smith DK. Commercially Relevant Orthogonal Multi-Component Supramolecular Hydrogels for Programmed Cell Growth. Chemistry 2018; 24:15112-15118. [PMID: 30021050 DOI: 10.1002/chem.201803292] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 12/18/2022]
Abstract
This study reports the ability of synthetically simple, commercially viable sugar-derived 1,3:2,4-dibenzylidenesorbitol-4',4"-diacylhydrazide (DBS-CONHNH2 ) to support cell growth. Simple mixing and orthogonal self-sorting can formulate heparin, agarose, and heparin-binding micelles into these gels-easily incorporating additional function. Interestingly, the components used in the gel formulation, direct the ability of cells to grow, meaning the chemical programming of these multi-component gels is directly translated to the biological systems in contact with them. This simple approach has potential for future development in regenerative medicine.
Collapse
Affiliation(s)
- Vânia M P Vieira
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Ana C Lima
- Nano Fiber Matrices, Groningen, The Netherlands
| | | | - David K Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
7
|
Sauvée C, Ström A, Haukka M, Sundén H. A Multi-Component Reaction towards the Development of Highly Modular Hydrogelators. Chemistry 2018; 24:8071-8075. [DOI: 10.1002/chem.201800635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/12/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Claire Sauvée
- Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 412 96 Göteborg Sweden
| | - Anna Ström
- Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 412 96 Göteborg Sweden
| | - Matti Haukka
- Department of Chemistry; University of Jyväskylä; P.O. Box 35 40014 University of Jyväskylä Finland
| | - Henrik Sundén
- Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 412 96 Göteborg Sweden
| |
Collapse
|
8
|
Rajkamal, Pathak NP, Halder T, Dhara S, Yadav S. Partially Acetylated or Benzoylated Arabinose Derivatives as Structurally Simple Organogelators: Effect of the Ester Protecting Group on Gel Properties. Chemistry 2017. [PMID: 28639337 DOI: 10.1002/chem.201701669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sugar-based low-molecular-weight gelators (LMWGs) have been used for various applications for a long time. Herein, structurally simple, ester-protected arabinosides are reported as low-molecular-weight organogelators (LMOGs) that are able to gel aromatic solvents, as well as petrol and diesel. Studies on the mechanical strength of the gels, through detailed rheological experiments, indicate that gels from the 1,2-dibenzoylated arabinose gelator possess better mechanical properties than those from the 1,2-diacetylated gelator. These results are interpreted in terms of the tendency of the former to form fibers with comparatively lower diameter than those of the latter, based on detailed field-emission SEM and AFM studies. Investigations of the interactions responsible for the self-assembly of gelators through IR spectroscopy and wide-angle X-ray scattering reveal that the primary interactions responsible are hydrogen bonds between the hydroxyl groups and ester C=O, which is absent in the solid state of the gelators. In addition, π interactions present in the 1,2-dibenzoylated derivative result in a more regular arrangement, which, in turn, leads to better mechanical properties of the gels compared with those of the 1,2-diacetylated gelator.
Collapse
Affiliation(s)
- Rajkamal
- Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Navendu P Pathak
- Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Tanmoy Halder
- Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Shubhajit Dhara
- Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Somnath Yadav
- Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| |
Collapse
|
9
|
Nishida Y, Tanaka A, Yamamoto S, Tominaga Y, Kunikata N, Mizuhata M, Maruyama T. In Situ Synthesis of a Supramolecular Hydrogelator at an Oil/Water Interface for Stabilization and Stimuli-Induced Fusion of Microdroplets. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yuki Nishida
- Department of Chemical Science and Engineering; Graduate School of Engineering; Kobe University; 1-1 Rokkodai, Nada-ku Kobe 657-8501 Japan
| | - Akiko Tanaka
- Department of Chemical Science and Engineering; Graduate School of Engineering; Kobe University; 1-1 Rokkodai, Nada-ku Kobe 657-8501 Japan
| | - Shota Yamamoto
- Department of Chemical Science and Engineering; Graduate School of Engineering; Kobe University; 1-1 Rokkodai, Nada-ku Kobe 657-8501 Japan
| | - Yudai Tominaga
- Department of Chemical Science and Engineering; Graduate School of Engineering; Kobe University; 1-1 Rokkodai, Nada-ku Kobe 657-8501 Japan
| | - Nobuaki Kunikata
- Department of Chemical Science and Engineering; Graduate School of Engineering; Kobe University; 1-1 Rokkodai, Nada-ku Kobe 657-8501 Japan
| | - Minoru Mizuhata
- Department of Chemical Science and Engineering; Graduate School of Engineering; Kobe University; 1-1 Rokkodai, Nada-ku Kobe 657-8501 Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering; Graduate School of Engineering; Kobe University; 1-1 Rokkodai, Nada-ku Kobe 657-8501 Japan
| |
Collapse
|
10
|
Nishida Y, Tanaka A, Yamamoto S, Tominaga Y, Kunikata N, Mizuhata M, Maruyama T. In Situ Synthesis of a Supramolecular Hydrogelator at an Oil/Water Interface for Stabilization and Stimuli-Induced Fusion of Microdroplets. Angew Chem Int Ed Engl 2017; 56:9410-9414. [DOI: 10.1002/anie.201704731] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/07/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Yuki Nishida
- Department of Chemical Science and Engineering; Graduate School of Engineering; Kobe University; 1-1 Rokkodai, Nada-ku Kobe 657-8501 Japan
| | - Akiko Tanaka
- Department of Chemical Science and Engineering; Graduate School of Engineering; Kobe University; 1-1 Rokkodai, Nada-ku Kobe 657-8501 Japan
| | - Shota Yamamoto
- Department of Chemical Science and Engineering; Graduate School of Engineering; Kobe University; 1-1 Rokkodai, Nada-ku Kobe 657-8501 Japan
| | - Yudai Tominaga
- Department of Chemical Science and Engineering; Graduate School of Engineering; Kobe University; 1-1 Rokkodai, Nada-ku Kobe 657-8501 Japan
| | - Nobuaki Kunikata
- Department of Chemical Science and Engineering; Graduate School of Engineering; Kobe University; 1-1 Rokkodai, Nada-ku Kobe 657-8501 Japan
| | - Minoru Mizuhata
- Department of Chemical Science and Engineering; Graduate School of Engineering; Kobe University; 1-1 Rokkodai, Nada-ku Kobe 657-8501 Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering; Graduate School of Engineering; Kobe University; 1-1 Rokkodai, Nada-ku Kobe 657-8501 Japan
| |
Collapse
|