1
|
Svoronos AA, Bahal R, Pereira MC, Barrera FN, Deacon JC, Bosenberg M, DiMaio D, Glazer PM, Engelman DM. Tumor-Targeted, Cytoplasmic Delivery of Large, Polar Molecules Using a pH-Low Insertion Peptide. Mol Pharm 2020; 17:461-471. [PMID: 31855437 DOI: 10.1021/acs.molpharmaceut.9b00883] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumor-targeted drug delivery systems offer not only the advantage of an enhanced therapeutic index, but also the possibility of overcoming the limitations that have largely restricted drug design to small, hydrophobic, "drug-like" molecules. Here, we explore the ability of a tumor-targeted delivery system centered on the use of a pH-low insertion peptide (pHLIP) to directly deliver moderately polar, multi-kDa molecules into tumor cells. A pHLIP is a short, pH-responsive peptide capable of inserting across a cell membrane to form a transmembrane helix at acidic pH. pHLIPs target the acidic tumor microenvironment with high specificity, and a drug attached to the inserting end of a pHLIP can be translocated across the cell membrane during the insertion process. We investigate the ability of wildtype pHLIP to deliver peptide nucleic acid (PNA) cargoes of varying sizes across lipid membranes. We find that pHLIP effectively delivers PNAs up to ∼7 kDa into cells in a pH-dependent manner. In addition, pHLIP retains its tumor-targeting capabilities when linked to cargoes of this size, although the amount delivered is reduced for PNA cargoes greater than ∼6 kDa. As drug-like molecules are traditionally restricted to sizes of ∼500 Da, this constitutes an order-of-magnitude expansion in the size range of deliverable drug candidates.
Collapse
Affiliation(s)
| | - Raman Bahal
- Department of Pharmaceutical Sciences , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Mohan C Pereira
- Department of Science & Mathematics , Cedarville University , Cedarville , Ohio 45314 , United States
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | | | | | | | | | | |
Collapse
|
2
|
Xu Y, Shi W, Li H, Li X, Ma H. H
2
O
2
‐Responsive Organosilica‐Doxorubicin Nanoparticles for Targeted Imaging and Killing of Cancer Cells Based on a Synthesized Silane‐Borate Precursor. ChemMedChem 2019; 14:1079-1085. [DOI: 10.1002/cmdc.201900142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/24/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yanhui Xu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wen Shi
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hongyu Li
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Huimin Ma
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
3
|
Mao W, Mao D, Yang F, Ma D. Transformative Supramolecular Vesicles Based on Acid-Degradable Acyclic Cucurbit[n]uril and a Prodrug for Promoted Tumoral-Cell Uptake. Chemistry 2019; 25:2272-2280. [PMID: 30511775 DOI: 10.1002/chem.201804835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/09/2018] [Indexed: 11/08/2022]
Abstract
Smart supramolecular vesicles constructed by host-guest interactions between "acid-degradable" acyclic cucurbit[n]uril (CB[n]) and a doxorubicin prodrug are reported. "Acid-degradable" acyclic CB[n] is a high-affinity host for several common antitumor drugs, and its degradation leads to a more dramatic decrease in binding affinity than that observed for "acid-sensitive" hosts. Supramolecular complexation between acid-degradable acyclic CB[n] and a doxorubicin prodrug resulted in the formation of negatively charged supramolecular vesicles. The prodrug strategy allowed doxorubicin to be conjugated to vesicles in a stable manner with a high drug-loading ratio of 20 %. The resulting supramolecular vesicles were responsive to tumor acidity (pH 6.5). Induced by mildly acidic conditions (pH 6.5-5.5), acid-degradable acyclic CB[n] could be degraded, and this led to a vesicle-to-micelle transition to form positively charged micelles. This transition resulted in a pH-dependent change in size and surface charge, which improved tumoral-cell uptake for doxorubicin.
Collapse
Affiliation(s)
- Weipeng Mao
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, P.R. China
| | - Dake Mao
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, P.R. China
| | - Fan Yang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, P.R. China
| | - Da Ma
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, P.R. China
| |
Collapse
|
4
|
Lee Y, Thompson DH. Stimuli-responsive liposomes for drug delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:10.1002/wnan.1450. [PMID: 28198148 PMCID: PMC5557698 DOI: 10.1002/wnan.1450] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 12/25/2022]
Abstract
The ultimate goal of drug delivery is to increase the bioavailability and reduce the toxic side effects of the active pharmaceutical ingredient (API) by releasing them at a specific site of action. In the case of antitumor therapy, association of the therapeutic agent with a carrier system can minimize damage to healthy, nontarget tissues, while limit systemic release and promoting long circulation to enhance uptake at the cancerous site due to the enhanced permeation and retention effect (EPR). Stimuli-responsive systems have become a promising way to deliver and release payloads in a site-selective manner. Potential carrier systems have been derived from a wide variety of materials, including inorganic nanoparticles, lipids, and polymers that have been imbued with stimuli-sensitive properties to accomplish triggered release based on an environmental cue. The unique features in the tumor microenvironment can serve as an endogenous stimulus (pH, redox potential, or unique enzymatic activity) or the locus of an applied external stimulus (heat or light) to trigger the controlled release of API. In liposomal carrier systems triggered release is generally based on the principle of membrane destabilization from local defects within bilayer membranes to effect release of liposome-entrapped drugs. This review focuses on the literature appearing between November 2008-February 2016 that reports new developments in stimuli-sensitive liposomal drug delivery strategies using pH change, enzyme transformation, redox reactions, and photochemical mechanisms of activation. WIREs Nanomed Nanobiotechnol 2017, 9:e1450. doi: 10.1002/wnan.1450 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Y Lee
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - D H Thompson
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
5
|
Wang Z, Luo M, Mao C, Wei Q, Zhao T, Li Y, Huang G, Gao J. A Redox-Activatable Fluorescent Sensor for the High-Throughput Quantification of Cytosolic Delivery of Macromolecules. Angew Chem Int Ed Engl 2016; 56:1319-1323. [PMID: 27981718 DOI: 10.1002/anie.201610302] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Indexed: 12/19/2022]
Abstract
Efficient delivery of biomacromolecules (e.g., proteins, nucleic acids) into cell cytosol remains a critical challenge for the development of macromolecular therapeutics or diagnostics. To date, most common approaches to assess cytosolic delivery rely on fluorescent labeling of macromolecules with an "always on" reporter and subcellular imaging of endolysosomal escape by confocal microscopy. This strategy is limited by poor signal-to-noise ratio and only offers low throughput, qualitative information. Herein we describe a quantitative redox-activatable sensor (qRAS) for the real-time monitoring of cytosolic delivery of macromolecules. qRAS-labeled macromolecules are silent (off) inside the intact endocytic organelles, but can be turned on by redox activation after endolysosomal disruption and delivery into the cytosol, thereby greatly improving the detection accuracy. In addition to confocal microscopy, this quantitative sensing technology allowed for a high-throughput screening of a panel of polymer carriers toward efficient cytosolic delivery of model proteins on a plate reader. The simple and versatile qRAS design offers a useful tool for the investigation of new strategies for endolysosomal escape of biomacromolecules to facilitate the development of macromolecular therapeutics for a variety of disease indications.
Collapse
Affiliation(s)
- Zhaohui Wang
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Min Luo
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Chengqiong Mao
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Qi Wei
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Tian Zhao
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Yang Li
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Gang Huang
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Jinming Gao
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| |
Collapse
|
6
|
Wang Z, Luo M, Mao C, Wei Q, Zhao T, Li Y, Huang G, Gao J. A Redox‐Activatable Fluorescent Sensor for the High‐Throughput Quantification of Cytosolic Delivery of Macromolecules. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Zhaohui Wang
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Min Luo
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Chengqiong Mao
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Qi Wei
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Tian Zhao
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Yang Li
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Gang Huang
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Jinming Gao
- Department of Pharmacology Harold C. Simmons Comprehensive Cancer Center UT Southwestern Medical Center at Dallas 5323 Harry Hines Blvd. Dallas TX 75390 USA
| |
Collapse
|
7
|
Hanz SZ, Shu NS, Qian J, Christman N, Kranz P, An M, Grewer C, Qiang W. Protonation‐Driven Membrane Insertion of a pH‐Low Insertion Peptide. Angew Chem Int Ed Engl 2016; 55:12376-81. [DOI: 10.1002/anie.201605203] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/22/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Samuel Z. Hanz
- Department of Chemistry Binghamton University State University of New York New York NY 13902 USA
| | - Nicolas S. Shu
- Department of Chemistry Binghamton University State University of New York New York NY 13902 USA
| | - Jieni Qian
- Department of Chemistry Binghamton University State University of New York New York NY 13902 USA
| | - Nathaniel Christman
- Department of Chemistry Binghamton University State University of New York New York NY 13902 USA
| | - Patrick Kranz
- Department of Chemistry Binghamton University State University of New York New York NY 13902 USA
| | - Ming An
- Department of Chemistry Binghamton University State University of New York New York NY 13902 USA
| | - Christof Grewer
- Department of Chemistry Binghamton University State University of New York New York NY 13902 USA
| | - Wei Qiang
- Department of Chemistry Binghamton University State University of New York New York NY 13902 USA
| |
Collapse
|
8
|
Hanz SZ, Shu NS, Qian J, Christman N, Kranz P, An M, Grewer C, Qiang W. Protonation‐Driven Membrane Insertion of a pH‐Low Insertion Peptide. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Samuel Z. Hanz
- Department of Chemistry Binghamton University State University of New York New York NY 13902 USA
| | - Nicolas S. Shu
- Department of Chemistry Binghamton University State University of New York New York NY 13902 USA
| | - Jieni Qian
- Department of Chemistry Binghamton University State University of New York New York NY 13902 USA
| | - Nathaniel Christman
- Department of Chemistry Binghamton University State University of New York New York NY 13902 USA
| | - Patrick Kranz
- Department of Chemistry Binghamton University State University of New York New York NY 13902 USA
| | - Ming An
- Department of Chemistry Binghamton University State University of New York New York NY 13902 USA
| | - Christof Grewer
- Department of Chemistry Binghamton University State University of New York New York NY 13902 USA
| | - Wei Qiang
- Department of Chemistry Binghamton University State University of New York New York NY 13902 USA
| |
Collapse
|
9
|
Viricel W, Mbarek A, Leblond J. Switchable Lipids: Conformational Change for Fast pH-Triggered Cytoplasmic Delivery. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Viricel W, Mbarek A, Leblond J. Switchable Lipids: Conformational Change for Fast pH-Triggered Cytoplasmic Delivery. Angew Chem Int Ed Engl 2015; 54:12743-7. [PMID: 26189870 DOI: 10.1002/anie.201504661] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 12/31/2022]
Abstract
We report the use of switchable lipids to improve the endosomal escape and cytosolic delivery of cell-impermeable compounds. The system is based on a conformational reorganization of the lipid structure upon acidification, as demonstrated by NMR spectroscopic studies. When incorporated in a liposome formulation, the switchable lipids triggered bilayer destabilization through fusion even in the presence of poly(ethylene glycol). We observed 88 % release of sulforhodamine B in 15 min at pH 5, and the liposome formulations demonstrated high stability at pH 7.4 for several months. By using sulforhodamine B as a model of a highly polar drug, we demonstrated fast cytosolic delivery mediated by endosomal escape in HeLa cells, and no toxicity.
Collapse
Affiliation(s)
- Warren Viricel
- Faculty of Pharmacy, University of Montreal, P.O. Box 6128, Downtown Station, Montreal, Quebec (Canada)
| | - Amira Mbarek
- Faculty of Pharmacy, University of Montreal, P.O. Box 6128, Downtown Station, Montreal, Quebec (Canada)
| | - Jeanne Leblond
- Faculty of Pharmacy, University of Montreal, P.O. Box 6128, Downtown Station, Montreal, Quebec (Canada).
| |
Collapse
|