1
|
Wu P, Gu Y, Liao L, Wu Y, Jin J, Wang Z, Zhou J, Shaik S, Wang B. Coordination Switch Drives Selective C−S Bond Formation by the Non‐Heme Sulfoxide Synthases**. Angew Chem Int Ed Engl 2022; 61:e202214235. [DOI: 10.1002/anie.202214235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Peng Wu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering School of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Yang Gu
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicine Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Langxing Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| | - Yanfei Wu
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicine Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Jiaoyu Jin
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicine Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Zhanfeng Wang
- Center for Advanced Materials Research Beijing Normal University Zhuhai 519087 China
| | - Jiahai Zhou
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicine Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Sason Shaik
- Institute of Chemistry The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen University Xiamen 361005 China
| |
Collapse
|
2
|
Qiu Y, Chen Z, Su E, Wang L, Sun L, Lei P, Xu H, Li S. Recent Strategies for the Biosynthesis of Ergothioneine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13682-13690. [PMID: 34757754 DOI: 10.1021/acs.jafc.1c05280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ergothioneine (EGT) is a unique naturally occurring amino acid that is usually biosynthesized by bacteria and fungi. As a food-derived antioxidant and cytoprotectant, it has several physiological benefits and has a wide range of applications in food, medicine, and cosmetics. Traditional production of EGT is mainly through biological extraction or chemical synthesis; however, these methods are inefficient, making large-scale production to meet the growing market demand difficult. Nowadays, the rapid development of synthetic biology has greatly accelerated the research on the EGT production by microbial fermentation. In this paper, the biological characteristics, applications, biosynthesis, separation, and detection methods of EGT were fully reviewed. Furthermore, the approaches and challenges for engineering microbial cells to efficiently synthesize EGT were also discussed. This work provides new ideas and future research potentials in EGT production.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
- Yangzhou Rixing Bio-Tech Co., Ltd., Yangzhou 225601, P. R. China
| | - Zhonglin Chen
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Erzheng Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Libin Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Liang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
3
|
Flückger S, Igareta NV, Seebeck FP. Convergent Evolution of Fungal Cysteine Dioxygenases. Chembiochem 2020; 21:3082-3086. [PMID: 32543095 DOI: 10.1002/cbic.202000317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Cupin-type cysteine dioxygenases (CDOs) are non-heme iron enzymes that occur in animals, plants, bacteria and in filamentous fungi. In this report, we show that agaricomycetes contain an entirely unrelated type of CDO that emerged by convergent evolution from enzymes involved in the biosynthesis of ergothioneine. The activity of this CDO type is dependent on the ergothioneine precursor N-α-trimethylhistidine. The metabolic link between ergothioneine production and cysteine oxidation suggests that the two processes might be part of the same chemical response in fungi, for example against oxidative stress.
Collapse
Affiliation(s)
- Sebastian Flückger
- Department for Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Nico V Igareta
- Department for Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Florian P Seebeck
- Department for Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| |
Collapse
|
4
|
Visser SP. Second‐Coordination Sphere Effects on Selectivity and Specificity of Heme and Nonheme Iron Enzymes. Chemistry 2020; 26:5308-5327. [DOI: 10.1002/chem.201905119] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/04/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sam P. Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical ScienceThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
5
|
Goncharenko KV, Flückiger S, Liao C, Lim D, Stampfli AR, Seebeck FP. Selenocysteine as a Substrate, an Inhibitor and a Mechanistic Probe for Bacterial and Fungal Iron-Dependent Sulfoxide Synthases. Chemistry 2020; 26:1328-1334. [PMID: 31545545 DOI: 10.1002/chem.201903898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 01/03/2023]
Abstract
Sulfoxide synthases are non-heme iron enzymes that participate in the biosynthesis of thiohistidines, such as ergothioneine and ovothiol A. The sulfoxide synthase EgtB from Chloracidobacterium thermophilum (CthEgtB) catalyzes oxidative coupling between the side chains of N-α-trimethyl histidine (TMH) and cysteine (Cys) in a reaction that entails complete reduction of molecular oxygen, carbon-sulfur (C-S) and sulfur-oxygen (S-O) bond formation as well as carbon-hydrogen (C-H) bond cleavage. In this report, we show that CthEgtB and other bacterial sulfoxide synthases cannot efficiently accept selenocysteine (SeCys) as a substrate in place of cysteine. In contrast, the sulfoxide synthase from the filamentous fungus Chaetomium thermophilum (CthEgt1) catalyzes C-S and C-Se bond formation at almost equal efficiency. We discuss evidence suggesting that this functional difference between bacterial and fungal sulfoxide synthases emerges from different modes of oxygen activation.
Collapse
Affiliation(s)
- Kristina V Goncharenko
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Sebastian Flückiger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Cangsong Liao
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - David Lim
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Anja R Stampfli
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| |
Collapse
|
6
|
Lin Y, Stańczak A, Manchev Y, Straganz GD, Visser SP. Can a Mononuclear Iron(III)‐Superoxo Active Site Catalyze the Decarboxylation of Dodecanoic Acid in UndA to Produce Biofuels? Chemistry 2019; 26:2233-2242. [DOI: 10.1002/chem.201903783] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/24/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Yen‐Ting Lin
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
| | - Agnieszka Stańczak
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
- Faculty of ChemistrySilesian University of Technology ks. Marcina Strzody 9 44-100 Gliwice Poland
- Tunneling Group, Biotechnology CentreSilesian University of Technology ul. Krzywoustego 8 44–100 Gliwice Poland
| | - Yulian Manchev
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
| | - Grit D. Straganz
- Graz University of TechnologyInstitute of Biochemistry Petergasse 12 8010 Graz Austria
| | - Sam P. Visser
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
7
|
Maurer A, Leisinger F, Lim D, Seebeck FP. Structure and Mechanism of Ergothionase fromTreponema denticola. Chemistry 2019; 25:10298-10303. [DOI: 10.1002/chem.201901866] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/21/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Alice Maurer
- Department for ChemistryUniversity of Basel Mattenstrasse 24a Basel 4002 Switzerland
| | - Florian Leisinger
- Department for ChemistryUniversity of Basel Mattenstrasse 24a Basel 4002 Switzerland
| | - David Lim
- Department for ChemistryUniversity of Basel Mattenstrasse 24a Basel 4002 Switzerland
| | - Florian P. Seebeck
- Department for ChemistryUniversity of Basel Mattenstrasse 24a Basel 4002 Switzerland
| |
Collapse
|
8
|
Liao C, Seebeck FP. Convergent Evolution of Ergothioneine Biosynthesis in Cyanobacteria. Chembiochem 2017; 18:2115-2118. [DOI: 10.1002/cbic.201700354] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Cangsong Liao
- Department for Chemistry; University of Basel; Postfach 3350 Mattenstrasse 24a 4002 Basel Switzerland
| | - Florian P. Seebeck
- Department for Chemistry; University of Basel; Postfach 3350 Mattenstrasse 24a 4002 Basel Switzerland
| |
Collapse
|
9
|
Affiliation(s)
- Reto Burn
- Department for Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Laëtitia Misson
- Department for Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Marcel Meury
- Department for Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Florian P. Seebeck
- Department for Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
10
|
Burn R, Misson L, Meury M, Seebeck FP. Anaerobic Origin of Ergothioneine. Angew Chem Int Ed Engl 2017; 56:12508-12511. [DOI: 10.1002/anie.201705932] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Reto Burn
- Department for Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Laëtitia Misson
- Department for Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Marcel Meury
- Department for Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Florian P. Seebeck
- Department for Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
11
|
Baunach M, Ding L, Willing K, Hertweck C. Bacterial Synthesis of Unusual Sulfonamide and Sulfone Antibiotics by Flavoenzyme‐Mediated Sulfur Dioxide Capture. Angew Chem Int Ed Engl 2015; 54:13279-83. [DOI: 10.1002/anie.201506541] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/24/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Martin Baunach
- Department of Biomolecular Chemistry, and Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena (Germany)
| | - Ling Ding
- Department of Biomolecular Chemistry, and Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena (Germany)
| | - Karsten Willing
- Department of Biomolecular Chemistry, and Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena (Germany)
| | - Christian Hertweck
- Department of Biomolecular Chemistry, and Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena (Germany)
- Chair for Natural Product Chemistry, Friedrich Schiller University, Jena (Germany)
| |
Collapse
|
12
|
Baunach M, Ding L, Willing K, Hertweck C. Bacterial Synthesis of Unusual Sulfonamide and Sulfone Antibiotics by Flavoenzyme‐Mediated Sulfur Dioxide Capture. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506541] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Martin Baunach
- Department of Biomolecular Chemistry, and Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena (Germany)
| | - Ling Ding
- Department of Biomolecular Chemistry, and Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena (Germany)
| | - Karsten Willing
- Department of Biomolecular Chemistry, and Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena (Germany)
| | - Christian Hertweck
- Department of Biomolecular Chemistry, and Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena (Germany)
- Chair for Natural Product Chemistry, Friedrich Schiller University, Jena (Germany)
| |
Collapse
|
13
|
Vit A, Mashabela GT, Blankenfeldt W, Seebeck FP. Structure of the Ergothioneine-Biosynthesis Amidohydrolase EgtC. Chembiochem 2015; 16:1490-6. [DOI: 10.1002/cbic.201500168] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 01/08/2023]
|