1
|
Tessmer MH, Stoll S. Protein Modeling with DEER Spectroscopy. Annu Rev Biophys 2025; 54:35-57. [PMID: 39689263 DOI: 10.1146/annurev-biophys-030524-013431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Double electron-electron resonance (DEER) combined with site-directed spin labeling can provide distance distributions between selected protein residues to investigate protein structure and conformational heterogeneity. The utilization of the full quantitative information contained in DEER data requires effective protein and spin label modeling methods. Here, we review the application of DEER data to protein modeling. First, we discuss the significance of spin label modeling for accurate extraction of protein structural information and review the most popular label modeling methods. Next, we review several important aspects of protein modeling with DEER, including site selection, how DEER restraints are applied, common artifacts, and the unique potential of DEER data for modeling structural ensembles and conformational landscapes. Finally, we discuss common applications of protein modeling with DEER data and provide an outlook.
Collapse
Affiliation(s)
- Maxx H Tessmer
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
2
|
Bogetti X, Saxena S. Integrating Electron Paramagnetic Resonance Spectroscopy and Computational Modeling to Measure Protein Structure and Dynamics. Chempluschem 2024; 89:e202300506. [PMID: 37801003 DOI: 10.1002/cplu.202300506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/07/2023]
Abstract
Electron paramagnetic resonance (EPR) has become a powerful probe of conformational heterogeneity and dynamics of biomolecules. In this Review, we discuss different computational modeling techniques that enrich the interpretation of EPR measurements of dynamics or distance restraints. A variety of spin labels are surveyed to provide a background for the discussion of modeling tools. Molecular dynamics (MD) simulations of models containing spin labels provide dynamical properties of biomolecules and their labels. These simulations can be used to predict EPR spectra, sample stable conformations and sample rotameric preferences of label sidechains. For molecular motions longer than milliseconds, enhanced sampling strategies and de novo prediction software incorporating or validated by EPR measurements are able to efficiently refine or predict protein conformations, respectively. To sample large-amplitude conformational transition, a coarse-grained or an atomistic weighted ensemble (WE) strategy can be guided with EPR insights. Looking forward, we anticipate an integrative strategy for efficient sampling of alternate conformations by de novo predictions, followed by validations by systematic EPR measurements and MD simulations. Continuous pathways between alternate states can be further sampled by WE-MD including all intermediate states.
Collapse
Affiliation(s)
- Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
3
|
Heubach CA, Hasanbasri Z, Abdullin D, Reuter A, Korzekwa B, Saxena S, Schiemann O. Differentiating between Label and Protein Conformers in Pulsed Dipolar EPR Spectroscopy with the dHis-Cu 2+ (NTA) Motif. Chemistry 2023; 29:e202302541. [PMID: 37755452 DOI: 10.1002/chem.202302541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 09/28/2023]
Abstract
Pulsed dipolar EPR spectroscopy (PDS) in combination with site-directed spin labeling is a powerful tool in structural biology. However, the commonly used spin labels are conjugated to biomolecules via rather long and flexible linkers, which hampers the translation of distance distributions into biomolecular conformations. In contrast, the spin label copper(II)-nitrilotriacetic acid [Cu2+ (NTA)] bound to two histidines (dHis) is rigid and yields narrow distance distributions, which can be more easily translated into biomolecular conformations. Here, we use this label on the 71 kDa Yersinia outer protein O (YopO) to decipher whether a previously experimentally observed bimodal distance distribution is due to two conformations of the biomolecule or of the flexible spin labels. Two different PDS experiments, that is, pulsed electron-electron double resonance (PELDOR aka DEER) and relaxation-induced dipolar modulation enhancement (RIDME), yield unimodal distance distribution with the dHis-Cu2+ (NTA) motif; this result suggests that the α-helical backbone of YopO adopts a single conformation in frozen solution. In addition, we show that the Cu2+ (NTA) label preferentially binds to the target double histidine (dHis) sites even in the presence of 22 competing native histidine residues. Our results therefore suggest that the generation of a His-null background is not required for this spin labeling methodology. Together these results highlight the value of the dHis-Cu2+ (NTA) motif in PDS experiments.
Collapse
Affiliation(s)
- Caspar A Heubach
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Zikri Hasanbasri
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Dinar Abdullin
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Arne Reuter
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Benedict Korzekwa
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
- Leibniz-Center for Diabetes Research, University of Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
| | - Sunil Saxena
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Olav Schiemann
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| |
Collapse
|
4
|
Bogetti X, Bogetti A, Casto J, Rule G, Chong L, Saxena S. Direct observation of negative cooperativity in a detoxification enzyme at the atomic level by Electron Paramagnetic Resonance spectroscopy and simulation. Protein Sci 2023; 32:e4770. [PMID: 37632831 PMCID: PMC10503414 DOI: 10.1002/pro.4770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/14/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The catalytic activity of human glutathione S-transferase A1-1 (hGSTA1-1), a homodimeric detoxification enzyme, is dependent on the conformational dynamics of a key C-terminal helix α9 in each monomer. However, the structural details of how the two monomers interact upon binding of substrates is not well understood and the structure of the ligand-free state of the hGSTA1-1 homodimer has not been resolved. Here, we used a combination of electron paramagnetic resonance (EPR) distance measurements and weighted ensemble (WE) simulations to characterize the conformational ensemble of the ligand-free state at the atomic level. EPR measurements reveal a broad distance distribution between a pair of Cu(II) labels in the ligand-free state that gradually shifts and narrows as a function of increasing ligand concentration. These shifts suggest changes in the relative positioning of the two α9 helices upon ligand binding. WE simulations generated unbiased pathways for the seconds-timescale transition between alternate states of the enzyme, leading to the generation of atomically detailed structures of the ligand-free state. Notably, the simulations provide direct observations of negative cooperativity between the monomers of hGSTA1-1, which involve the mutually exclusive docking of α9 in each monomer as a lid over the active site. We identify key interactions between residues that lead to this negative cooperativity. Negative cooperativity may be essential for interaction of hGSTA1-1 with a wide variety of toxic substrates and their subsequent neutralization. More broadly, this work demonstrates the power of integrating EPR distances with WE rare-events sampling strategy to gain mechanistic information on protein function at the atomic level.
Collapse
Affiliation(s)
- Xiaowei Bogetti
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Anthony Bogetti
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Joshua Casto
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Gordon Rule
- Department of Biological SciencesCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Lillian Chong
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Sunil Saxena
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
5
|
Peter MF, Gebhardt C, Mächtel R, Muñoz GGM, Glaenzer J, Narducci A, Thomas GH, Cordes T, Hagelueken G. Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET. Nat Commun 2022; 13:4396. [PMID: 35906222 PMCID: PMC9338047 DOI: 10.1038/s41467-022-31945-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Pulsed electron-electron double resonance spectroscopy (PELDOR/DEER) and single-molecule Förster resonance energy transfer spectroscopy (smFRET) are frequently used to determine conformational changes, structural heterogeneity, and inter probe distances in biological macromolecules. They provide qualitative information that facilitates mechanistic understanding of biochemical processes and quantitative data for structural modelling. To provide a comprehensive comparison of the accuracy of PELDOR/DEER and smFRET, we use a library of double cysteine variants of four proteins that undergo large-scale conformational changes upon ligand binding. With either method, we use established standard experimental protocols and data analysis routines to determine inter-probe distances in the presence and absence of ligands. The results are compared to distance predictions from structural models. Despite an overall satisfying and similar distance accuracy, some inconsistencies are identified, which we attribute to the use of cryoprotectants for PELDOR/DEER and label-protein interactions for smFRET. This large-scale cross-validation of PELDOR/DEER and smFRET highlights the strengths, weaknesses, and synergies of these two important and complementary tools in integrative structural biology.
Collapse
Affiliation(s)
- Martin F Peter
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Christian Gebhardt
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Rebecca Mächtel
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Gabriel G Moya Muñoz
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Janin Glaenzer
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Alessandra Narducci
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Gavin H Thomas
- Department of Biology (Area 10), University of York, York, UK
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| | | |
Collapse
|
6
|
Singewald K, Wilkinson JA, Hasanbasri Z, Saxena S. Beyond structure: Deciphering site-specific dynamics in proteins from double histidine-based EPR measurements. Protein Sci 2022; 31:e4359. [PMID: 35762707 PMCID: PMC9202549 DOI: 10.1002/pro.4359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/27/2022]
Abstract
Site-specific dynamics in proteins are at the heart of protein function. While electron paramagnetic resonance (EPR) has potential to measure dynamics in large protein complexes, the reliance on flexible nitroxide labels is limitating especially for the accurate measurement of site-specific β-sheet dynamics. Here, we employed EPR spectroscopy to measure site-specific dynamics across the surface of a protein, GB1. Through the use of the double Histidine (dHis) motif, which enables labeling with a Cu(II) - nitrilotriacetic acid (NTA) complex, dynamics information was obtained for both α-helical and β-sheet sites. Spectral simulations of the resulting CW-EPR report unique site-specific fluctuations across the surface of GB1. Additionally, we performed molecular dynamics (MD) simulations to complement the EPR data. The dynamics observed from MD agree with the EPR results. Furthermore, we observe small changes in gǁ values for different sites, which may be due to small differences in coordination geometry and/or local electrostatics of the site. Taken together, this work expands the utility of Cu(II)NTA-based EPR measurements to probe information beyond distance constraints.
Collapse
Affiliation(s)
- Kevin Singewald
- Department of ChemistryUniversity of PittsburghPittsburghPAUSA
| | | | | | - Sunil Saxena
- Department of ChemistryUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
7
|
Bogetti X, Hasanbasri Z, Hunter HR, Saxena S. An optimal acquisition scheme for Q-band EPR distance measurements using Cu 2+-based protein labels. Phys Chem Chem Phys 2022; 24:14727-14739. [PMID: 35574729 DOI: 10.1039/d2cp01032a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recent advances in site-directed Cu2+ labeling of proteins and nucleic acids have added an attractive new methodology to measure the structure-function relationship in biomolecules. Despite the promise, accessing the higher sensitivity of Q-band Double Electron Electron Resonance (DEER) has been challenging for Cu2+ labels designed for proteins. Q-band DEER experiments on this label typically require many measurements at different magnetic fields, since the pulses can excite only a few orientations at a given magnetic field. Herein, we analyze such orientational effects through simulations and show that three DEER measurements, at strategically selected magnetic fields, are generally sufficient to acquire an orientational-averaged DEER time trace for this spin label at Q-band. The modeling results are experimentally verified on Cu2+ labeled human glutathione S-transferase (hGSTA1-1). The DEER distance distribution measured at the Q-band shows good agreement with the distance distribution sampled by molecular dynamics (MD) simulations and X-band experiments. The concordance of MD sampled distances and experimentally measured distances adds growing evidence that MD simulations can accurately predict distances for the Cu2+ labels, which remains a key bottleneck for the commonly used nitroxide label. In all, this minimal collection scheme reduces data collection time by as much as six-fold and is generally applicable to many octahedrally coordinated Cu2+ systems. Furthermore, the concepts presented here may be applied to other metals and pulsed EPR experiments.
Collapse
Affiliation(s)
- Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, PA 15260, USA.
| | - Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, PA 15260, USA.
| | - Hannah R Hunter
- Department of Chemistry, University of Pittsburgh, PA 15260, USA.
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, PA 15260, USA.
| |
Collapse
|
8
|
Saio T, Hiramatsu S, Asada M, Nakagawa H, Shimizu K, Kumeta H, Nakamura T, Ishimori K. Conformational ensemble of a multidomain protein explored by Gd 3+ electron paramagnetic resonance. Biophys J 2021; 120:2943-2951. [PMID: 34242587 DOI: 10.1016/j.bpj.2021.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/07/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022] Open
Abstract
Despite their importance in function, the conformational state of proteins and its changes are often poorly understood, mainly because of the lack of an efficient tool. MurD, a 47-kDa protein enzyme responsible for peptidoglycan biosynthesis, is one of those proteins whose conformational states and changes during their catalytic cycle are not well understood. Although it has been considered that MurD takes a single conformational state in solution as shown by a crystal structure, the solution nuclear magnetic resonance (NMR) study suggested the existence of multiple conformational state of apo MurD in solution. However, the conformational distribution has not been evaluated. In this work, we investigate the conformational states of MurD by the use of electron paramagnetic resonance (EPR), especially intergadolinium distance measurement using double electron-electron resonance (DEER) measurement. The gadolinium ions are fixed on specific positions on MurD via a rigid double-arm paramagnetic lanthanide tag that has been originally developed for paramagnetic NMR. The combined use of NMR and EPR enables accurate interpretation of the DEER distance information to the structural information of MurD. The DEER distance measurement for apo MurD shows a broad distance distribution, whereas the presence of the inhibitor narrows the distance distribution. The results suggest that MurD exists in a wide variety of conformational states in the absence of ligands, whereas binding of the inhibitor eliminates variation in conformational states. The multiple conformational states of MurD were previously implied by NMR experiments, but our DEER data provided structural characterization of the conformational variety of MurD.
Collapse
Affiliation(s)
- Tomohide Saio
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan.
| | - Soya Hiramatsu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Mizue Asada
- Instrument Center, Institute for Molecular Science, Okazaki, Japan
| | - Hiroshi Nakagawa
- Materials Sciences Research CenterTokai, Ibaraki, Japan; J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
| | - Kazumi Shimizu
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
| | | | | | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
9
|
Singewald K, Bogetti X, Sinha K, Rule GS, Saxena S. Double Histidine Based EPR Measurements at Physiological Temperatures Permit Site‐Specific Elucidation of Hidden Dynamics in Enzymes. Angew Chem Int Ed Engl 2020; 59:23040-23044. [DOI: 10.1002/anie.202009982] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Kevin Singewald
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Xiaowei Bogetti
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Kaustubh Sinha
- Department of Biological Sciences Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Gordon S Rule
- Department of Biological Sciences Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Sunil Saxena
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
10
|
Singewald K, Bogetti X, Sinha K, Rule GS, Saxena S. Double Histidine Based EPR Measurements at Physiological Temperatures Permit Site‐Specific Elucidation of Hidden Dynamics in Enzymes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kevin Singewald
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Xiaowei Bogetti
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Kaustubh Sinha
- Department of Biological Sciences Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Gordon S Rule
- Department of Biological Sciences Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Sunil Saxena
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
11
|
Braun TS, Widder P, Osswald U, Groß L, Williams L, Schmidt M, Helmle I, Summerer D, Drescher M. Isoindoline-Based Nitroxides as Bioresistant Spin Labels for Protein Labeling through Cysteines and Alkyne-Bearing Noncanonical Amino Acids. Chembiochem 2020; 21:958-962. [PMID: 31657498 PMCID: PMC7187341 DOI: 10.1002/cbic.201900537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/18/2019] [Indexed: 12/15/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling (SDSL) is a powerful tool in protein structural research. Nitroxides are highly suitable spin labeling reagents, but suffer from limited stability, particularly in the cellular environment. Herein we present the synthesis of a maleimide- and an azide-modified tetraethyl-shielded isoindoline-based nitroxide (M- and Az-TEIO) for labeling of cysteines or the noncanonical amino acid para-ethynyl-l-phenylalanine (pENF). We demonstrate the high stability of TEIO site-specifically attached to the protein thioredoxin (TRX) against reduction in prokaryotic and eukaryotic environments, and conduct double electron-electron resonance (DEER) measurements. We further generate a rotamer library for the new residue pENF-Az-TEIO that affords a distance distribution that is in agreement with the measured distribution.
Collapse
Affiliation(s)
- Theresa Sophie Braun
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
- Konstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Pia Widder
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
- Konstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Uwe Osswald
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Lina Groß
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Lara Williams
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Moritz Schmidt
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Irina Helmle
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
- Present address: Faculty of ScienceDepartment of Pharmaceutical BiologyUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
| | - Daniel Summerer
- Faculty of Chemistry and Chemical BiologyTU DortmundOtto-Hahn-Strasse 4a44227DortmundGermany
| | - Malte Drescher
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
- Konstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| |
Collapse
|
12
|
Abdullin D, Schiemann O. Pulsed Dipolar EPR Spectroscopy and Metal Ions: Methodology and Biological Applications. Chempluschem 2020; 85:353-372. [DOI: 10.1002/cplu.201900705] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/16/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Dinar Abdullin
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| |
Collapse
|
13
|
Accelerating structural life science by paramagnetic lanthanide probe methods. Biochim Biophys Acta Gen Subj 2020; 1864:129332. [DOI: 10.1016/j.bbagen.2019.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 02/08/2023]
|
14
|
Abdullin D, Brehm P, Fleck N, Spicher S, Grimme S, Schiemann O. Pulsed EPR Dipolar Spectroscopy on Spin Pairs with one Highly Anisotropic Spin Center: The Low-Spin Fe III Case. Chemistry 2019; 25:14388-14398. [PMID: 31386227 PMCID: PMC6900076 DOI: 10.1002/chem.201902908] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/05/2019] [Indexed: 02/01/2023]
Abstract
Pulsed electron paramagnetic resonance (EPR) dipolar spectroscopy (PDS) offers several methods for measuring dipolar coupling constants and thus the distance between electron spin centers. Up to now, PDS measurements have been mostly applied to spin centers whose g-anisotropies are moderate and therefore have a negligible effect on the dipolar coupling constants. In contrast, spin centers with large g-anisotropy yield dipolar coupling constants that depend on the g-values. In this case, the usual methods of extracting distances from the raw PDS data cannot be applied. Here, the effect of the g-anisotropy on PDS data is studied in detail on the example of the low-spin Fe3+ ion. First, this effect is described theoretically, using the work of Bedilo and Maryasov (Appl. Magn. Reson. 2006, 30, 683-702) as a basis. Then, two known Fe3+ /nitroxide compounds and one new Fe3+ /trityl compound were synthesized and PDS measurements were carried out on them using a method called relaxation induced dipolar modulation enhancement (RIDME). Based on the theoretical results, a RIDME data analysis procedure was developed, which facilitated the extraction of the inter-spin distance and the orientation of the inter-spin vector relative to the Fe3+ g-tensor frame from the RIDME data. The accuracy of the determined distances and orientations was confirmed by comparison with MD simulations. This method can thus be applied to the highly relevant class of metalloproteins with, for example, low-spin Fe3+ ions.
Collapse
Affiliation(s)
- Dinar Abdullin
- Institute of Physical and Theoretical ChemistryUniversity of Bonn53115BonnGermany
| | - Philipp Brehm
- Institute of Physical and Theoretical ChemistryUniversity of Bonn53115BonnGermany
- Current address: Institute of Inorganic ChemistryUniversity of Bonn53115BonnGermany
| | - Nico Fleck
- Institute of Physical and Theoretical ChemistryUniversity of Bonn53115BonnGermany
| | - Sebastian Spicher
- Mulliken Center for Theoretical ChemistryUniversity of Bonn53115BonnGermany
| | - Stefan Grimme
- Mulliken Center for Theoretical ChemistryUniversity of Bonn53115BonnGermany
| | - Olav Schiemann
- Institute of Physical and Theoretical ChemistryUniversity of Bonn53115BonnGermany
| |
Collapse
|
15
|
Bonucci A, Ouari O, Guigliarelli B, Belle V, Mileo E. In‐Cell EPR: Progress towards Structural Studies Inside Cells. Chembiochem 2019; 21:451-460. [DOI: 10.1002/cbic.201900291] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Alessio Bonucci
- Magnetic Resonance CenterCERMUniversity of Florence 50019 Sesto Fiorentino Italy
| | - Olivier Ouari
- Aix Marseille UnivCNRSICRInstitut de Chimie Radicalaire 13013 Marseille France
| | - Bruno Guigliarelli
- Aix Marseille UnivCNRSBIPBioénergétique et Ingénierie des ProtéinesIMM 13009 Marseille France
| | - Valérie Belle
- Aix Marseille UnivCNRSBIPBioénergétique et Ingénierie des ProtéinesIMM 13009 Marseille France
| | - Elisabetta Mileo
- Aix Marseille UnivCNRSBIPBioénergétique et Ingénierie des ProtéinesIMM 13009 Marseille France
| |
Collapse
|
16
|
Wort JL, Ackermann K, Giannoulis A, Stewart AJ, Norman DG, Bode BE. Sub-Micromolar Pulse Dipolar EPR Spectroscopy Reveals Increasing Cu II -labelling of Double-Histidine Motifs with Lower Temperature. Angew Chem Int Ed Engl 2019; 58:11681-11685. [PMID: 31218813 PMCID: PMC6771633 DOI: 10.1002/anie.201904848] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/03/2019] [Indexed: 12/20/2022]
Abstract
Electron paramagnetic resonance (EPR) distance measurements are making increasingly important contributions to the studies of biomolecules by providing highly accurate geometric constraints. Combining double-histidine motifs with CuII spin labels can further increase the precision of distance measurements. It is also useful for proteins containing essential cysteines that can interfere with thiol-specific labelling. However, the non-covalent CuII coordination approach is vulnerable to low binding-affinity. Herein, dissociation constants (KD ) are investigated directly from the modulation depths of relaxation-induced dipolar modulation enhancement (RIDME) EPR experiments. This reveals low- to sub-μm CuII KD s under EPR distance measurement conditions at cryogenic temperatures. We show the feasibility of exploiting the double-histidine motif for EPR applications even at sub-μm protein concentrations in orthogonally labelled CuII -nitroxide systems using a commercial Q-band EPR instrument.
Collapse
Affiliation(s)
- Joshua L. Wort
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex, and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Katrin Ackermann
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex, and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Angeliki Giannoulis
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex, and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Alan J. Stewart
- School of MedicineBiomedical Sciences Research Complex, and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughSt AndrewsKY16 9TFUK
| | - David G. Norman
- School of Life SciencesUniversity of Dundee, Medical Sciences InstituteDundeeDD1 5EHUK
| | - Bela E. Bode
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex, and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| |
Collapse
|
17
|
Wort JL, Ackermann K, Giannoulis A, Stewart AJ, Norman DG, Bode BE. Sub‐Micromolar Pulse Dipolar EPR Spectroscopy Reveals Increasing Cu
II
‐labelling of Double‐Histidine Motifs with Lower Temperature. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904848] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Joshua L. Wort
- EaStCHEM School of Chemistry Biomedical Sciences Research Complex, and Centre of Magnetic Resonance University of St Andrews North Haugh St Andrews KY16 9ST UK
| | - Katrin Ackermann
- EaStCHEM School of Chemistry Biomedical Sciences Research Complex, and Centre of Magnetic Resonance University of St Andrews North Haugh St Andrews KY16 9ST UK
| | - Angeliki Giannoulis
- EaStCHEM School of Chemistry Biomedical Sciences Research Complex, and Centre of Magnetic Resonance University of St Andrews North Haugh St Andrews KY16 9ST UK
| | - Alan J. Stewart
- School of Medicine Biomedical Sciences Research Complex, and Centre of Magnetic Resonance University of St Andrews North Haugh St Andrews KY16 9TF UK
| | - David G. Norman
- School of Life Sciences University of Dundee, Medical Sciences Institute Dundee DD1 5EH UK
| | - Bela E. Bode
- EaStCHEM School of Chemistry Biomedical Sciences Research Complex, and Centre of Magnetic Resonance University of St Andrews North Haugh St Andrews KY16 9ST UK
| |
Collapse
|
18
|
Sameach H, Ghosh S, Gevorkyan‐Airapetov L, Saxena S, Ruthstein S. EPR Spectroscopy Detects Various Active State Conformations of the Transcriptional Regulator CueR. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hila Sameach
- Department of Chemistry Faculty of Exact Sciences Bar-Ilan University Ramat-Gan 5290002 Israel
| | - Shreya Ghosh
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | | | - Sunil Saxena
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Sharon Ruthstein
- Department of Chemistry Faculty of Exact Sciences Bar-Ilan University Ramat-Gan 5290002 Israel
| |
Collapse
|
19
|
Sameach H, Ghosh S, Gevorkyan-Airapetov L, Saxena S, Ruthstein S. EPR Spectroscopy Detects Various Active State Conformations of the Transcriptional Regulator CueR. Angew Chem Int Ed Engl 2019; 58:3053-3056. [PMID: 30566257 DOI: 10.1002/anie.201810656] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/29/2018] [Indexed: 01/14/2023]
Abstract
The interactions between proteins and their specific DNA sequences are the basis of many cellular processes. Hence, developing methods to build an atomic level picture of these interactions helps improve our understanding of key cellular mechanisms. CueR is an Escherichia coli copper-sensing transcription regulator. The inhibition of copper-sensing transcription regulators can kill pathogens, without harming the host. Several spectroscopic studies and crystallographic data have suggested that changes in the conformation of both the DNA and the protein control transcription. However, due to the inadequate resolution of these methods, the exact number of active conformations of CueR has not been determined. Resolving the structure of CueR in its active state is highly important for the development of specific inhibitors. Herein, the potential of double-histidine (dHis)-based CuII spin labeling for the identification of various conformational states of CueR during transcription is shown.
Collapse
Affiliation(s)
- Hila Sameach
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shreya Ghosh
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Lada Gevorkyan-Airapetov
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Sharon Ruthstein
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
20
|
Bahramzadeh A, Jiang H, Huber T, Otting G. Two Histidines in an α‐Helix: A Rigid Co
2+
‐Binding Motif for PCS Measurements by NMR Spectroscopy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alireza Bahramzadeh
- Research School of Chemistry The Australian National University Canberra ACT 2601 Australia
| | - Hailun Jiang
- Research School of Chemistry The Australian National University Canberra ACT 2601 Australia
| | - Thomas Huber
- Research School of Chemistry The Australian National University Canberra ACT 2601 Australia
| | - Gottfried Otting
- Research School of Chemistry The Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
21
|
Bahramzadeh A, Jiang H, Huber T, Otting G. Two Histidines in an α‐Helix: A Rigid Co
2+
‐Binding Motif for PCS Measurements by NMR Spectroscopy. Angew Chem Int Ed Engl 2018; 57:6226-6229. [DOI: 10.1002/anie.201802501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Alireza Bahramzadeh
- Research School of Chemistry The Australian National University Canberra ACT 2601 Australia
| | - Hailun Jiang
- Research School of Chemistry The Australian National University Canberra ACT 2601 Australia
| | - Thomas Huber
- Research School of Chemistry The Australian National University Canberra ACT 2601 Australia
| | - Gottfried Otting
- Research School of Chemistry The Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
22
|
Prokopiou G, Lee MD, Collauto A, Abdelkader EH, Bahrenberg T, Feintuch A, Ramirez-Cohen M, Clayton J, Swarbrick JD, Graham B, Otting G, Goldfarb D. Small Gd(III) Tags for Gd(III)–Gd(III) Distance Measurements in Proteins by EPR Spectroscopy. Inorg Chem 2018; 57:5048-5059. [DOI: 10.1021/acs.inorgchem.8b00133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Georgia Prokopiou
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael D. Lee
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Alberto Collauto
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elwy H. Abdelkader
- Research School of Chemistry, Australian National University, Canberra, ACT 2601,Australia
| | - Thorsten Bahrenberg
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Akiva Feintuch
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Marie Ramirez-Cohen
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jessica Clayton
- Department of Physics, University of California, Santa Barbara, California 93106-9530, United States
| | - James D. Swarbrick
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT 2601,Australia
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
23
|
Yin DM, Hammler D, Peter MF, Marx A, Schmitz A, Hagelueken G. Inhibitor-Directed Spin Labelling-A High Precision and Minimally Invasive Technique to Study the Conformation of Proteins in Solution. Chemistry 2018; 24:6665-6671. [DOI: 10.1002/chem.201706047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Dongsheng M. Yin
- Max Planck Fellow Chemical Biology; Center of Advanced European Studies and Research (caesar); Ludwig-Erhard-Allee 2 53175 Bonn Germany
- LIMES Chemical Biology Unit; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Daniel Hammler
- Department of Chemistry; University of Konstanz; Universitaetsstraße 10 78457 Konstanz Germany
| | - Martin F. Peter
- Institute of Physical and Theoretical Chemistry; Rheinische Friedrich-Wilhelms-Universität Bonn; Wegelerstrasse 12 53115 Bonn Germany
| | - Andreas Marx
- Department of Chemistry; University of Konstanz; Universitaetsstraße 10 78457 Konstanz Germany
| | - Anton Schmitz
- Max Planck Fellow Chemical Biology; Center of Advanced European Studies and Research (caesar); Ludwig-Erhard-Allee 2 53175 Bonn Germany
- LIMES Chemical Biology Unit; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Gregor Hagelueken
- Institute of Physical and Theoretical Chemistry; Rheinische Friedrich-Wilhelms-Universität Bonn; Wegelerstrasse 12 53115 Bonn Germany
| |
Collapse
|
24
|
Meyer A, Jassoy JJ, Spicher S, Berndhäuser A, Schiemann O. Performance of PELDOR, RIDME, SIFTER, and DQC in measuring distances in trityl based bi- and triradicals: exchange coupling, pseudosecular coupling and multi-spin effects. Phys Chem Chem Phys 2018; 20:13858-13869. [DOI: 10.1039/c8cp01276h] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The performance of pulsed EPR methods for distance measurements is evaluated on three different trityl model systems.
Collapse
Affiliation(s)
- Andreas Meyer
- Institute of Physical and Theoretical Chemistry
- Rheinische Friedrich-Wilhelms-University Bonn
- 53115 Bonn
- Germany
| | - Jean Jacques Jassoy
- Institute of Physical and Theoretical Chemistry
- Rheinische Friedrich-Wilhelms-University Bonn
- 53115 Bonn
- Germany
| | - Sebastian Spicher
- Institute of Physical and Theoretical Chemistry
- Rheinische Friedrich-Wilhelms-University Bonn
- 53115 Bonn
- Germany
| | - Andreas Berndhäuser
- Institute of Physical and Theoretical Chemistry
- Rheinische Friedrich-Wilhelms-University Bonn
- 53115 Bonn
- Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry
- Rheinische Friedrich-Wilhelms-University Bonn
- 53115 Bonn
- Germany
| |
Collapse
|
25
|
Lawless MJ, Shimshi A, Cunningham TF, Kinde MN, Tang P, Saxena S. Analysis of Nitroxide-Based Distance Measurements in Cell Extracts and in Cells by Pulsed ESR Spectroscopy. Chemphyschem 2017; 18:1653-1660. [PMID: 28295910 DOI: 10.1002/cphc.201700115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Indexed: 11/10/2022]
Abstract
Measurements of distances in cells by pulsed ESR spectroscopy afford tremendous opportunities to study proteins in native environments that are irreproducible in vitro. However, the in-cell environment is harsh towards the typical nitroxide radicals used in double electron-electron resonance (DEER) experiments. A systematic examination is performed on the loss of the DEER signal, including contributions from nitroxide decay and nitroxide side-chain cleavage. In addition, the possibility of extending the lifetime of the nitroxide radical by use of an oxidizing agent is investigated. Using this oxidizing agent, DEER distance measurements are performed on doubly nitroxide-labeled GB1, the immunoglobulin-binding domain of protein G, at varying incubation times in the cellular environment. It is found that, by comparison of the loss of DEER signal to the loss of the CW spectrum, cleavage of the nitroxide side chain contributes to the loss of DEER signal, which is significantly greater in cells than in cell extracts. Finally, local spin concentrations are monitored at varying incubation times to show the time required for molecular diffusion of a small globular protein within the cellular milieu.
Collapse
Affiliation(s)
- Matthew J Lawless
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Amit Shimshi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Timothy F Cunningham
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA.,Current address: Department of Chemistry, Hanover College, 484 Ball Dr, Hanover, IN, 47243, USA
| | - Monica N Kinde
- Department of Anesthesiology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, PA, 15213, USA.,Current address: Division of Basic Sciences, Kansas City University of Medicine and Biosciences, 2901 St. John's Blvd., Joplin, MO, 64804, USA
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, PA, 15213, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
26
|
Lawless MJ, Sarver JL, Saxena S. Nucleotide-Independent Copper(II)-Based Distance Measurements in DNA by Pulsed ESR Spectroscopy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Matthew J. Lawless
- Department of Chemistry; University of Pittsburgh; 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Jessica L. Sarver
- Division of Biological, Chemical, and Environmental Sciences; Westminster College; 319 S Market St. New Wilmington PA 16172 USA
| | - Sunil Saxena
- Department of Chemistry; University of Pittsburgh; 219 Parkman Avenue Pittsburgh PA 15260 USA
| |
Collapse
|
27
|
Lawless MJ, Sarver JL, Saxena S. Nucleotide-Independent Copper(II)-Based Distance Measurements in DNA by Pulsed ESR Spectroscopy. Angew Chem Int Ed Engl 2017; 56:2115-2117. [PMID: 28090713 DOI: 10.1002/anie.201611197] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/14/2016] [Indexed: 01/05/2023]
Abstract
A site-specific Cu2+ binding motif within a DNA duplex for distance measurements by ESR spectroscopy is reported. This motif utilizes a commercially available 2,2'-dipicolylamine (DPA) phosphormadite easily incorporated into any DNA oligonucleotide during initial DNA synthesis. The method only requires the simple post-synthetic addition of Cu2+ without the need for further chemical modification. Notably, the label is positioned within the DNA duplex, as opposed to outside the helical perimeter, for an accurate measurement of duplex distance. A distance of 2.7 nm was measured on a doubly Cu2+ -labeled DNA sequence, which is in exact agreement with the expected distance from both DNA modeling and molecular dynamic simulations. This result suggests that with this labeling strategy the ESR measured distance directly reports on backbone DNA distance, without the need for further modeling. Furthermore, the labeling strategy is structure- and nucleotide-independent.
Collapse
Affiliation(s)
- Matthew J Lawless
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Jessica L Sarver
- Division of Biological, Chemical, and Environmental Sciences, Westminster College, 319 S Market St., New Wilmington, PA, 16172, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
28
|
Yang Y, Gong YJ, Litvinov A, Liu HK, Yang F, Su XC, Goldfarb D. Generic tags for Mn(ii) and Gd(iii) spin labels for distance measurements in proteins. Phys Chem Chem Phys 2017; 19:26944-26956. [DOI: 10.1039/c7cp04311b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The coordination mode of the metal ion in the spin label affects the distance distribution determined by DEER distance measurements.
Collapse
Affiliation(s)
- Yin Yang
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot
- Israel
| | - Yan-Jun Gong
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Aleksei Litvinov
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot
- Israel
| | - Hong-Kai Liu
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Feng Yang
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Daniella Goldfarb
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot
- Israel
| |
Collapse
|
29
|
Joseph B, Tormyshev VM, Rogozhnikova OY, Akhmetzyanov D, Bagryanskaya EG, Prisner TF. Selective High-Resolution Detection of Membrane Protein-Ligand Interaction in Native Membranes Using Trityl-Nitroxide PELDOR. Angew Chem Int Ed Engl 2016; 55:11538-42. [DOI: 10.1002/anie.201606335] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Benesh Joseph
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum; Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Victor M. Tormyshev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk 630090 Russia
- Novosibirsk State University; Novosibirsk 630090 Russia
| | - Olga Yu. Rogozhnikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk 630090 Russia
| | - Dmitry Akhmetzyanov
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum; Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Elena G. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk 630090 Russia
| | - Thomas F. Prisner
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum; Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| |
Collapse
|
30
|
Joseph B, Tormyshev VM, Rogozhnikova OY, Akhmetzyanov D, Bagryanskaya EG, Prisner TF. Selective High-Resolution Detection of Membrane Protein-Ligand Interaction in Native Membranes Using Trityl-Nitroxide PELDOR. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606335] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Benesh Joseph
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum; Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Victor M. Tormyshev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk 630090 Russia
- Novosibirsk State University; Novosibirsk 630090 Russia
| | - Olga Yu. Rogozhnikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk 630090 Russia
| | - Dmitry Akhmetzyanov
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum; Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Elena G. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk 630090 Russia
| | - Thomas F. Prisner
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum; Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| |
Collapse
|
31
|
Mascali FC, Ching HYV, Rasia RM, Un S, Tabares LC. Using Genetically Encodable Self-Assembling GdIIISpin Labels To Make In-Cell Nanometric Distance Measurements. Angew Chem Int Ed Engl 2016; 55:11041-3. [DOI: 10.1002/anie.201603653] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/20/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Florencia C. Mascali
- Instituto de Biología Molecular y Celular de Rosario; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, Ocampo y Esmeralda; Rosario 2000 Argentina
| | - H. Y. Vincent Ching
- Institut de Biologie Intégrative de la Cellule (I2BC); IBITECS, CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay; F-91198 Gif-sur-Yvette France
| | - Rodolfo M. Rasia
- Instituto de Biología Molecular y Celular de Rosario; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, Ocampo y Esmeralda; Rosario 2000 Argentina
| | - Sun Un
- Institut de Biologie Intégrative de la Cellule (I2BC); IBITECS, CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay; F-91198 Gif-sur-Yvette France
| | - Leandro C. Tabares
- Institut de Biologie Intégrative de la Cellule (I2BC); IBITECS, CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay; F-91198 Gif-sur-Yvette France
| |
Collapse
|
32
|
Mascali FC, Ching HYV, Rasia RM, Un S, Tabares LC. Using Genetically Encodable Self-Assembling GdIIISpin Labels To Make In-Cell Nanometric Distance Measurements. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603653] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Florencia C. Mascali
- Instituto de Biología Molecular y Celular de Rosario; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, Ocampo y Esmeralda; Rosario 2000 Argentina
| | - H. Y. Vincent Ching
- Institut de Biologie Intégrative de la Cellule (I2BC); IBITECS, CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay; F-91198 Gif-sur-Yvette France
| | - Rodolfo M. Rasia
- Instituto de Biología Molecular y Celular de Rosario; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, Ocampo y Esmeralda; Rosario 2000 Argentina
| | - Sun Un
- Institut de Biologie Intégrative de la Cellule (I2BC); IBITECS, CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay; F-91198 Gif-sur-Yvette France
| | - Leandro C. Tabares
- Institut de Biologie Intégrative de la Cellule (I2BC); IBITECS, CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay; F-91198 Gif-sur-Yvette France
| |
Collapse
|
33
|
|