1
|
Cui Y, Wang X, Jiang Z, Zhang C, Liang Z, Chen Y, Liu Z, Guo Z. A Photoacoustic Probe with Blood-Brain Barrier Crossing Ability for Imaging Oxidative Stress Dynamics in the Mouse Brain. Angew Chem Int Ed Engl 2023; 62:e202214505. [PMID: 36597890 DOI: 10.1002/anie.202214505] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Spatiotemporal assessment of the oxidative stress dynamics in the brain is crucial for understanding the molecular mechanism underlying neurodegenerative diseases. However, existing oxidative stress probes have poor blood-brain barrier permeability or poor penetration depth, making them unsuitable for brain imaging. Herein, we developed a photoacoustic probe that enables real-time imaging of oxidative stress dynamics in the mouse brain. The probe not only responds to oxidative stress in a reversible and ratiometric manner, but it can also cross the blood-brain barrier of the mouse brain. Notably, the probe displayed excellent photoacoustic imaging of oxidative stress dynamics in the brains of Parkinson's disease mouse models. In addition, we investigated the antioxidant properties of natural polyphenols in the brain of a Parkinson's disease mouse model using the probe as an imaging agent and suggested the potential of the probe for screening anti-oxidative stress agents.
Collapse
Affiliation(s)
- Yijing Cui
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.,College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Xiaoqing Wang
- College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Zhiyong Jiang
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.,State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210093, China
| | - Changli Zhang
- School of Environmental Science, Nanjing Xiaozhuang University, 3601 Hongjing Road, Nanjing, 211171, China
| | - Zhaolun Liang
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210093, China
| | - Zhipeng Liu
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210093, China
| |
Collapse
|
2
|
Wu L, Zeng W, Ishigaki Y, Zhang J, Bai H, Harimoto T, Suzuki T, Ye D. A Ratiometric Photoacoustic Probe with a Reversible Response to Hydrogen Sulfide and Hydroxyl Radicals for Dynamic Imaging of Liver Inflammation. Angew Chem Int Ed Engl 2022; 61:e202209248. [DOI: 10.1002/anie.202209248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Luyan Wu
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Wenhui Zeng
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yusuke Ishigaki
- Department of Chemistry Faculty of Science Hokkaido University N10 W8, North-ward Sapporo 060-0810 Japan
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - He Bai
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Takashi Harimoto
- Department of Chemistry Faculty of Science Hokkaido University N10 W8, North-ward Sapporo 060-0810 Japan
| | - Takanori Suzuki
- Department of Chemistry Faculty of Science Hokkaido University N10 W8, North-ward Sapporo 060-0810 Japan
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
3
|
Wu L, Zeng W, Ishigaki Y, Zhang J, Bai H, Harimoto T, Suzuki T, Ye D. A Ratiometric Photoacoustic Probe with a Reversible Response to Hydrogen Sulfide and Hydroxyl Radicals for Dynamic Imaging of Liver Inflammation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Luyan Wu
- Nanjing University Chemistry CHINA
| | | | | | | | - He Bai
- Nanjing University chemistry CHINA
| | | | | | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Chemistry 163 Xianlin Road, 210023 Nanjing CHINA
| |
Collapse
|
4
|
Kaur A, Adair LD, Ball SR, New EJ, Sunde M. A Fluorescent Sensor for Quantitative Super‐Resolution Imaging of Amyloid Fibril Assembly**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amandeep Kaur
- School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW 2006 Australia
- The University of Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
| | - Liam D. Adair
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Sydney Sydney NSW 2006 Australia
| | - Sarah R. Ball
- School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW 2006 Australia
| | - Elizabeth J. New
- The University of Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Sydney Sydney NSW 2006 Australia
| | - Margaret Sunde
- School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW 2006 Australia
- The University of Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
5
|
Kaur A, Adair LD, Ball SR, New EJ, Sunde M. A Fluorescent Sensor for Quantitative Super-resolution Imaging of Amyloid Fibril Assembly. Angew Chem Int Ed Engl 2021; 61:e202112832. [PMID: 34935241 DOI: 10.1002/anie.202112832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/07/2022]
Abstract
Many soluble proteins can self-assemble into macromolecular structures called amyloids, a subset of which are implicated in a range of neurodegenerative disorders. The nanoscale size and structural heterogeneity of prefibrillar and early aggregates, as well as mature amyloid fibrils, pose significant challenges for the quantification of amyloid species, identification of their cellular interaction partners and for elucidation of the molecular basis for cytotoxicity. We report a fluorescent amyloid sensor AmyBlink-1 and its application in super-resolution imaging of amyloid structures. AmyBlink-1 exhibits a 5-fold increase in ratio of the green (thioflavin T) to red (Alexa Fluor 647) emission intensities upon interaction with amyloid fibrils. Using AmyBlink-1 , we performed nanoscale imaging of four different types of amyloid fibrils, achieving a resolution of ~30 nm. AmyBlink-1 enables nanoscale visualization and subsequent quantification of morphological features, such as the length and skew of individual amyloid aggregates formed at different times along the amyloid assembly pathway.
Collapse
Affiliation(s)
- Amandeep Kaur
- University of Sydney, School.of Medical Sciences, University of Sydney, 2006, Sydney, AUSTRALIA
| | - Liam D Adair
- The University of Sydney, School of Chemistry, AUSTRALIA
| | - Sarah R Ball
- The University of Sydney, School of Medical Sciences, AUSTRALIA
| | | | - Margaret Sunde
- The University of Sydney, School of Medical Sciences, AUSTRALIA
| |
Collapse
|
6
|
Wang Z, Cong TD, Zhong W, Lau JW, Kwek G, Chan-Park MB, Xing B. Cyanine-Dyad Molecular Probe for the Simultaneous Profiling of the Evolution of Multiple Radical Species During Bacterial Infections. Angew Chem Int Ed Engl 2021; 60:16900-16905. [PMID: 34018295 DOI: 10.1002/anie.202104100] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/12/2021] [Indexed: 12/16/2022]
Abstract
Real-time monitoring of the evolution of bacterial infection-associated multiple radical species is critical to accurately profile the pathogenesis and host-defense mechanisms. Here, we present a unique dual wavelength near-infrared (NIR) cyanine-dyad molecular probe (HCy5-Cy7) for simultaneous monitoring of reactive oxygen and nitrogen species (RONS) variations both in vitro and in vivo. HCy5-Cy7 specifically turns on its fluorescence at 660 nm via superoxide or hydroxyl radical (O2 .- , . OH)-mediated oxidation of reduced HCy5 moiety to Cy5, while peroxynitrite or hypochlorous species (ONOO- , ClO- )-induced Cy7 structural degradation causes the emission turn-off at 800 nm. Such multispectral but reverse signal responses allow multiplex manifestation of in situ oxidative and nitrosative stress events during the pathogenic and defensive processes in both bacteria-infected macrophage cells and living mice. Most importantly, this study may also provide new perspectives for understanding the bacterial pathogenesis and advancing the precision medicine against infectious diseases.
Collapse
Affiliation(s)
- Zhimin Wang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang link, 637371, Singapore, Singapore
| | - Thang Do Cong
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang link, 637371, Singapore, Singapore
| | - Wenbin Zhong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore
| | - Jun Wei Lau
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang link, 637371, Singapore, Singapore
| | - Germain Kwek
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang link, 637371, Singapore, Singapore
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang link, 637371, Singapore, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637459, Singapore, Singapore
| |
Collapse
|
7
|
Wang Z, Cong TD, Zhong W, Lau JW, Kwek G, Chan‐Park MB, Xing B. Cyanine‐Dyad Molecular Probe for the Simultaneous Profiling of the Evolution of Multiple Radical Species During Bacterial Infections. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhimin Wang
- Division of Chemistry and Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University 21 Nanyang link 637371 Singapore Singapore
| | - Thang Do Cong
- Division of Chemistry and Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University 21 Nanyang link 637371 Singapore Singapore
| | - Wenbin Zhong
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive 637459 Singapore Singapore
| | - Jun Wei Lau
- Division of Chemistry and Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University 21 Nanyang link 637371 Singapore Singapore
| | - Germain Kwek
- Division of Chemistry and Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University 21 Nanyang link 637371 Singapore Singapore
| | - Mary B. Chan‐Park
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive 637459 Singapore Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University 21 Nanyang link 637371 Singapore Singapore
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive 637459 Singapore Singapore
| |
Collapse
|
8
|
Akari AS, Hodgson GK, Golian KP, Impellizzeri S. Photochemical Insights on Intramolecular Dye‐Sensitized Free‐Radical Processes with a Quinoline Antenna. ChemistrySelect 2021. [DOI: 10.1002/slct.202100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Aviya S. Akari
- Laboratory for Nanomaterials and Molecular Plasmonics Department of Chemistry and Biology Ryerson University 350 Victoria St. Toronto ON M5B 2K3 Canada
| | - Gregory K. Hodgson
- Laboratory for Nanomaterials and Molecular Plasmonics Department of Chemistry and Biology Ryerson University 350 Victoria St. Toronto ON M5B 2K3 Canada
| | - Karol P. Golian
- Laboratory for Nanomaterials and Molecular Plasmonics Department of Chemistry and Biology Ryerson University 350 Victoria St. Toronto ON M5B 2K3 Canada
| | - Stefania Impellizzeri
- Laboratory for Nanomaterials and Molecular Plasmonics Department of Chemistry and Biology Ryerson University 350 Victoria St. Toronto ON M5B 2K3 Canada
| |
Collapse
|
9
|
Hay MA, Boskovic C. Lanthanoid Complexes as Molecular Materials: The Redox Approach. Chemistry 2021; 27:3608-3637. [PMID: 32965741 DOI: 10.1002/chem.202003761] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 11/05/2022]
Abstract
The development of molecular materials with novel functionality offers promise for technological innovation. Switchable molecules that incorporate redox-active components are enticing candidate compounds due to their potential for electronic manipulation. Lanthanoid metals are most prevalent in their trivalent state and usually redox-activity in lanthanoid complexes is restricted to the ligand. The unique electronic and physical properties of lanthanoid ions have been exploited for various applications, including in magnetic and luminescent materials as well as in catalysis. Lanthanoid complexes are also promising for applications reliant on switchability, where the physical properties can be modulated by varying the oxidation state of a coordinated ligand. Lanthanoid-based redox activity is also possible, encompassing both divalent and tetravalent metal oxidation states. Thus, utilization of redox-active lanthanoid metals offers an attractive opportunity to further expand the capabilities of molecular materials. This review surveys both ligand and lanthanoid centered redox-activity in pre-existing molecular systems, including tuning of lanthanoid magnetic and photophysical properties by modulating the redox states of coordinated ligands. Ultimately the combination of redox-activity at both ligands and metal centers in the same molecule can afford novel electronic structures and physical properties, including multiconfigurational electronic states and valence tautomerism. Further targeted exploration of these features is clearly warranted, both to enhance understanding of the underlying fundamental chemistry, and for the generation of a potentially important new class of molecular material.
Collapse
Affiliation(s)
- Moya A Hay
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| | - Colette Boskovic
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
10
|
Wawi MJ, Bijoux A, Inguimbert N, Mahler C, Wagner S, Marder TB, Ribou AC. Peptide Vectors Carry Pyrene to Cell Organelles Allowing Real-Time Quantification of Free Radicals in Mitochondria by Time-Resolved Fluorescence Microscopy. Chembiochem 2021; 22:1676-1685. [PMID: 33368947 DOI: 10.1002/cbic.202000845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/22/2020] [Indexed: 11/09/2022]
Abstract
Real-time quantification of reactive nitrogen and oxygen species (ROS) in cells is of paramount importance as they are essential for cellular functions. Their excessive formation contributes to the dysfunction of cells and organisms, ultimately leading to cell death. As ROS are mostly produced in the mitochondria, we have synthesized a fluorescent probe able to reach this organelle to detect and quantify, in real time, the variation of ROS by time-resolved microfluorimetry. The new probes are based on the long fluorescence lifetime of pyrene butyric acid (PBA). Two PBA isomers, attached at their 1- or 2-positions to a peptide vector to target mitochondria, were compared and were shown to allow the measurement of free radical species and oxygen, but not non-radical species such as H2 O2 .
Collapse
Affiliation(s)
- Mohamad Jamal Wawi
- Institute of Modeling and Analysis in Geo-environmental and Health (IMAGES_ESPACE-DEV), Université de Perpignan Via Domitia, Bât. B, 52 avenue P. Alduy, 66860, Perpignan, France.,ESPACE-DEV, UMR 228, Univ. Montpellier, IRD, Univ. Antilles, Univ. Guyane, Univ. Réunion, Maison de la télédétection, 500 rue Jean-François Breton, 34093, Montpellier, Cedex 5, France
| | - Amandine Bijoux
- Institute of Modeling and Analysis in Geo-environmental and Health (IMAGES_ESPACE-DEV), Université de Perpignan Via Domitia, Bât. B, 52 avenue P. Alduy, 66860, Perpignan, France
| | - Nicolas Inguimbert
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, 58 avenue Paul Alduy, 66860, Perpignan, France
| | - Christoph Mahler
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Stephan Wagner
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Anne-Cécile Ribou
- Institute of Modeling and Analysis in Geo-environmental and Health (IMAGES_ESPACE-DEV), Université de Perpignan Via Domitia, Bât. B, 52 avenue P. Alduy, 66860, Perpignan, France.,ESPACE-DEV, UMR 228, Univ. Montpellier, IRD, Univ. Antilles, Univ. Guyane, Univ. Réunion, Maison de la télédétection, 500 rue Jean-François Breton, 34093, Montpellier, Cedex 5, France
| |
Collapse
|
11
|
Cepeda C, Raibaut L, Fremy G, Eliseeva SV, Romieu A, Pécaut J, Boturyn D, Petoud S, Sénèque O. Using Native Chemical Ligation for Site‐Specific Synthesis of Hetero‐bis‐lanthanide Peptide Conjugates: Application to Ratiometric Visible or Near‐Infrared Detection of Zn
2+. Chemistry 2020; 26:13476-13483. [DOI: 10.1002/chem.202002708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Céline Cepeda
- Univ. Grenoble Alpes CNRS, CEA, IRIG, LCBM (UMR 5249) 38000 Grenoble France
- Univ. Grenoble Alpes CNRS, DCM (UMR 5250) 38000 Grenoble France
| | - Laurent Raibaut
- Univ. Grenoble Alpes CNRS, CEA, IRIG, LCBM (UMR 5249) 38000 Grenoble France
| | - Guillaume Fremy
- Univ. Grenoble Alpes CNRS, CEA, IRIG, LCBM (UMR 5249) 38000 Grenoble France
- Univ. Grenoble Alpes CNRS, DCM (UMR 5250) 38000 Grenoble France
| | | | - Anthony Romieu
- ICMUB UMR 6302 CNRS Univ. Bourgogne Franche-Comté 21000 Dijon France
| | - Jacques Pécaut
- Univ. Grenoble Alpes CEA CNRS, IRIG SyMMES 38000 Grenoble France
| | - Didier Boturyn
- Univ. Grenoble Alpes CNRS, DCM (UMR 5250) 38000 Grenoble France
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire CNRS UPR 4301 45071 Orléans France
| | - Olivier Sénèque
- Univ. Grenoble Alpes CNRS, CEA, IRIG, LCBM (UMR 5249) 38000 Grenoble France
| |
Collapse
|
12
|
Liu H, Wang S, Gao H, Shen Z. Reversible Reaction‐Based Fluorescent Probes for Dynamic Sensing and Bioimaging. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hui Liu
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures School of Chemistry and Chemical Engineering Nanjing University 210046 Nanjing P. R. China
| | - Sisi Wang
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures School of Chemistry and Chemical Engineering Nanjing University 210046 Nanjing P. R. China
| | - Hu Gao
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures School of Chemistry and Chemical Engineering Nanjing University 210046 Nanjing P. R. China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures School of Chemistry and Chemical Engineering Nanjing University 210046 Nanjing P. R. China
| |
Collapse
|
13
|
Sharma H, Tan NK, Trinh N, Yeo JH, New EJ, Pfeffer FM. A fluorescent naphthalimide NADH mimic for continuous and reversible sensing of cellular redox state. Chem Commun (Camb) 2020; 56:2240-2243. [DOI: 10.1039/c9cc09748a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A new naphthalimide based NADH mimic that functions as a fully reversible fluorescent “on off” probe for redox state has been synthesised and evaluated.
Collapse
Affiliation(s)
- Hemant Sharma
- School of Life and Environmental Sciences
- Deakin University
- Australia
| | - Nian Kee Tan
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
| | - Natalie Trinh
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
| | - Jia Hao Yeo
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
| | | | | |
Collapse
|
14
|
Nguyen TD, Song MS, Ly NH, Lee SY, Joo S. Nanostars on Nanopipette Tips: A Raman Probe for Quantifying Oxygen Levels in Hypoxic Single Cells and Tumours. Angew Chem Int Ed Engl 2019; 58:2710-2714. [DOI: 10.1002/anie.201812677] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/05/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Thanh Danh Nguyen
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil University Seoul Korea
| | - Min Seok Song
- Laboratory of Veterinary PharmacologyCollege of Veterinary MedicineSeoul National University Seoul Korea
| | - Nguyễn Hoàng Ly
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil University Seoul Korea
| | - So Yeong Lee
- Laboratory of Veterinary PharmacologyCollege of Veterinary MedicineSeoul National University Seoul Korea
| | - Sang‐Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil University Seoul Korea
| |
Collapse
|
15
|
Nguyen TD, Song MS, Ly NH, Lee SY, Joo S. Nanostars on Nanopipette Tips: A Raman Probe for Quantifying Oxygen Levels in Hypoxic Single Cells and Tumours. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Thanh Danh Nguyen
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil University Seoul Korea
| | - Min Seok Song
- Laboratory of Veterinary PharmacologyCollege of Veterinary MedicineSeoul National University Seoul Korea
| | - Nguyễn Hoàng Ly
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil University Seoul Korea
| | - So Yeong Lee
- Laboratory of Veterinary PharmacologyCollege of Veterinary MedicineSeoul National University Seoul Korea
| | - Sang‐Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil University Seoul Korea
| |
Collapse
|
16
|
Andina D, Leroux JC, Luciani P. Ratiometric Fluorescent Probes for the Detection of Reactive Oxygen Species. Chemistry 2017; 23:13549-13573. [DOI: 10.1002/chem.201702458] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Diana Andina
- Department of Chemistry and Applied Biosciences; Swiss Federal Institute of Technology (ETHZ); Vladimir-Prelog-Weg 1-5/10 8093 Zürich Switzerland
| | - Jean-Christophe Leroux
- Department of Chemistry and Applied Biosciences; Swiss Federal Institute of Technology (ETHZ); Vladimir-Prelog-Weg 1-5/10 8093 Zürich Switzerland
| | - Paola Luciani
- Biologisch-Pharmazeutisch Fakultät, Institut für Pharmazie; Friedrich-Schiller-Universität Jena; 07743 Jena Germany
| |
Collapse
|
17
|
Preise des Royal Australian Chemical Institute. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
|