1
|
Mascherpa A, Ishii N, Tayagui A, Liu J, Sollogoub M, Fairbanks AJ. Lysosomal Targeting of β-Cyclodextrin. Chemistry 2023; 29:e202203252. [PMID: 36265126 PMCID: PMC10100462 DOI: 10.1002/chem.202203252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 11/06/2022]
Abstract
β-Cyclodextrin (β-CD) and derivatives are approved therapeutics in >30 clinical settings. β-CDs have also shown promise as therapeutics for treatment of some lysosomal storage disorders, such as Niemann-Pick disease type C, and other disease states which involve metabolite accumulation in the lysosome. In these cases, β-CD activity relies on transport to the lysosome, wherein it can bind hydrophobic substrate and effect extraction. The post-translational attachment of N-glycans terminated in mannose-6-phosphate (M6P) residues is the predominant method by which lysosomal enzymes are targeted to the lysosome. In this work we covalently attach a synthetic biantennary bis-M6P-terminated N-glycan to β-CD and study the effect of the added glycans in a mammalian cell line. The formation of a host guest complex with a Cy5 fluorophore allows study of both cellular internalisation and transport to the lysosome by fluorescence microscopy. Results indicate that the rates of both internalisation and lysosomal transport are increased by the attachment of M6P-glycans to β-CD, indicating that M6P-glycan conjugation may improve the therapeutic effectiveness of β-CD for the treatment of disorders involving hydrophobic metabolite accumulation in the lysosome.
Collapse
Affiliation(s)
- Andrea Mascherpa
- School of Physical and Chemical SciencesUniversity of CanterburyPrivate Bag 4800Christchurch8140New Zealand
| | - Nozomii Ishii
- School of Physical and Chemical SciencesUniversity of CanterburyPrivate Bag 4800Christchurch8140New Zealand
| | - Ayelen Tayagui
- School of Physical and Chemical SciencesUniversity of CanterburyPrivate Bag 4800Christchurch8140New Zealand
| | - Jiang Liu
- Sorbonne UniversityCNRSInstitut Parisien de Chimie Moléculaire (IPCM), UMR 82324, place Jussieu75005ParisFrance
| | - Matthieu Sollogoub
- Sorbonne UniversityCNRSInstitut Parisien de Chimie Moléculaire (IPCM), UMR 82324, place Jussieu75005ParisFrance
| | - Antony J. Fairbanks
- School of Physical and Chemical SciencesUniversity of CanterburyPrivate Bag 4800Christchurch8140New Zealand
| |
Collapse
|
2
|
Wu Q, Dong S, Xuan W. N-Glycan Engineering: Constructing the N-GlcNAc Stump. Chembiochem 2023; 24:e202200388. [PMID: 35977913 DOI: 10.1002/cbic.202200388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/17/2022] [Indexed: 01/05/2023]
Abstract
N-Glycosylation is often essential for the structure and function of proteins. However, N-glycosylated proteins from natural sources exhibit considerable heterogeneity in the appended oligosaccharides, bringing daunting challenges to corresponding basic research and therapeutic applications. To address this issue, various synthetic, enzymatic, and chemoenzymatic approaches have been elegantly designed. Utilizing the endoglycosidase-catalyzed transglycosylation method, a single N-acetylglucosamine (N-GlcNAc, analogous to a tree stump) on proteins can be converted to various homogeneous N-glycosylated forms, thereby becoming the focus of research efforts. In this concept article, we briefly introduce the methods that allow the generation of N-GlcNAc and its close analogues on proteins and peptides and highlight the current challenges and opportunities the scientific community is facing.
Collapse
Affiliation(s)
- Qifan Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Weimin Xuan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.,School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
3
|
Doelman W, van Kasteren SI. Synthesis of glycopeptides and glycopeptide conjugates. Org Biomol Chem 2022; 20:6487-6507. [PMID: 35903971 PMCID: PMC9400947 DOI: 10.1039/d2ob00829g] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/07/2022] [Indexed: 12/16/2022]
Abstract
Protein glycosylation is a key post-translational modification important to many facets of biology. Glycosylation can have critical effects on protein conformation, uptake and intracellular routing. In immunology, glycosylation of antigens has been shown to play a role in self/non-self distinction and the effective uptake of antigens. Improperly glycosylated proteins and peptide fragments, for instance those produced by cancerous cells, are also prime candidates for vaccine design. To study these processes, access to peptides bearing well-defined glycans is of critical importance. In this review, the key approaches towards synthetic, well-defined glycopeptides, are described, with a focus on peptides useful for and used in immunological studies. Special attention is given to the glycoconjugation approaches that have been developed in recent years, as these enable rapid synthesis of various (unnatural) glycopeptides, enabling powerful carbohydrate structure/activity studies. These techniques, combined with more traditional total synthesis and chemoenzymatic methods for the production of glycopeptides, should help unravel some of the complexities of glycobiology in the near future.
Collapse
Affiliation(s)
- Ward Doelman
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Sander I van Kasteren
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
4
|
Pagar AD, Patil MD, Flood DT, Yoo TH, Dawson PE, Yun H. Recent Advances in Biocatalysis with Chemical Modification and Expanded Amino Acid Alphabet. Chem Rev 2021; 121:6173-6245. [PMID: 33886302 DOI: 10.1021/acs.chemrev.0c01201] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two main strategies for enzyme engineering, directed evolution and rational design, have found widespread applications in improving the intrinsic activities of proteins. Although numerous advances have been achieved using these ground-breaking methods, the limited chemical diversity of the biopolymers, restricted to the 20 canonical amino acids, hampers creation of novel enzymes that Nature has never made thus far. To address this, much research has been devoted to expanding the protein sequence space via chemical modifications and/or incorporation of noncanonical amino acids (ncAAs). This review provides a balanced discussion and critical evaluation of the applications, recent advances, and technical breakthroughs in biocatalysis for three approaches: (i) chemical modification of cAAs, (ii) incorporation of ncAAs, and (iii) chemical modification of incorporated ncAAs. Furthermore, the applications of these approaches and the result on the functional properties and mechanistic study of the enzymes are extensively reviewed. We also discuss the design of artificial enzymes and directed evolution strategies for enzymes with ncAAs incorporated. Finally, we discuss the current challenges and future perspectives for biocatalysis using the expanded amino acid alphabet.
Collapse
Affiliation(s)
- Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Mahesh D Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Dillon T Flood
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
5
|
Beau JM, Boyer FD, Norsikian S, Urban D, Vauzeilles B, Xolin A. Glycosylation: The Direct Synthesis of 2-Acetamido-2-Deoxy-Sugar Glycosides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800735] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jean-Marie Beau
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud, Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
- Laboratoire de Synthèse de Biomolécules; Institut de Chimie Moléculaire et des Matériaux d'Orsay; Univ. Paris-Sud, CNRS, Université Paris-Saclay; 91405 Orsay France
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud, Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
- Institut Jean-Pierre Bourgin, INRA; AgroParisTech, CNRS; Université Paris-Saclay; 78000 Versailles France
| | - Stéphanie Norsikian
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud, Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
| | - Dominique Urban
- Laboratoire de Synthèse de Biomolécules; Institut de Chimie Moléculaire et des Matériaux d'Orsay; Univ. Paris-Sud, CNRS, Université Paris-Saclay; 91405 Orsay France
| | - Boris Vauzeilles
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud, Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
- Laboratoire de Synthèse de Biomolécules; Institut de Chimie Moléculaire et des Matériaux d'Orsay; Univ. Paris-Sud, CNRS, Université Paris-Saclay; 91405 Orsay France
| | - Amandine Xolin
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud, Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
| |
Collapse
|
6
|
Ishii N, Ogiwara K, Sano K, Kumada J, Yamamoto K, Matsuzaki Y, Matsuo I. Specificity of Donor Structures for endo-β-N-Acetylglucosaminidase-Catalyzed Transglycosylation Reactions. Chembiochem 2017; 19:136-141. [PMID: 29125207 DOI: 10.1002/cbic.201700506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Indexed: 11/11/2022]
Abstract
To demonstrate the structural specificity of the glycosyl donor for the transglycosylation reaction by using endo-β-N-acetylglucosaminidase from Mucor hiemalis (endo-M), a series of tetrasaccharide oxazoline derivatives was synthesized. These derivatives correspond to the core structure of an asparagine-linked glycoprotein glycan with a β-mannose unit of a non-natural-type monosaccharide, including β-glucose, β-galactose, and β-talose in place of the β-mannose moiety. The transglycosylation activity of wildtype (WT) endo-M and two mutants, N175Q and N175A, was examined by using these tetrasaccharide donors with p-nitrophenyl N-acetylglucosaminide (GlcNAc-pNp). The essential configuration of the hydroxy group for the transglycosylation reaction was determined. On the basis of these results, the transglycosylation reaction was investigated by using chemically modified donors, and transglycosylated products were successfully obtained.
Collapse
Affiliation(s)
- Nozomi Ishii
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kyryu Gunma, 376-8515, Japan
| | - Ken Ogiwara
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kyryu Gunma, 376-8515, Japan
| | - Kanae Sano
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kyryu Gunma, 376-8515, Japan
| | - Jyunichi Kumada
- Tokyo Chemical Industry Co., Ltd., 6-15-9 Toshima, Kita-ku, Tokyo, 114-0003, Japan
| | - Kenji Yamamoto
- Research Institute of Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Yuji Matsuzaki
- Tokyo Chemical Industry Co., Ltd., 6-15-9 Toshima, Kita-ku, Tokyo, 114-0003, Japan
| | - Ichiro Matsuo
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kyryu Gunma, 376-8515, Japan
| |
Collapse
|
7
|
Villadsen K, Martos-Maldonado MC, Jensen KJ, Thygesen MB. Chemoselective Reactions for the Synthesis of Glycoconjugates from Unprotected Carbohydrates. Chembiochem 2017; 18:574-612. [DOI: 10.1002/cbic.201600582] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Klaus Villadsen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Manuel C. Martos-Maldonado
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Knud J. Jensen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Mikkel B. Thygesen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| |
Collapse
|
8
|
Abstract
A robust platform for facile defined glycan synthesis does not exist. Yet the need for such technology has never been greater as researchers seek to understand the full scope of carbohydrate function, stretching beyond the classical roles of structure and energy storage to encompass highly nuanced cell signaling events. To comprehensively explore and exploit the full diversity of carbohydrate functions, we must first be able to synthesize them in a controlled manner. Toward this goal, traditional chemical syntheses are inefficient while nature's own synthetic enzymes, the glycosyl transferases, can be challenging to express and expensive to employ on scale. Glycoside hydrolases represent a pool of glycan processing enzymes that can be either used in a transglycosylation mode or, better, engineered to function as "glycosynthases," mutant enzymes capable of assembling glycosides. Glycosynthases grant access to valuable glycans that act as functional and structural probes or indeed as inhibitors and therapeutics in their own right. The remodelling of glycosylation patterns in therapeutic proteins via glycoside hydrolases and their mutants is an exciting frontier in both basic research and industrial scale processes.
Collapse
Affiliation(s)
- Phillip M. Danby
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|