1
|
Pal S. Impact of Hydrogen‐Bond Surrogate Model on Helix Stabilization and Development of Protein‐Protein Interaction Inhibitors. ChemistrySelect 2023. [DOI: 10.1002/slct.202204207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Sunit Pal
- Chemical Genomics Centre of the Max Planck Society Max Planck Institute of Molecular Physiology Otto-Hahn-Str. 11 44227 Dortmund Germany
| |
Collapse
|
2
|
Zhang Z, Chen M, Zhan L, Zheng F, Si W, Sha J, Chen Y. Length-dependent collective vibrational dynamics in alpha-helices. Chemphyschem 2022; 23:e202200082. [PMID: 35384211 DOI: 10.1002/cphc.202200082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/03/2022] [Indexed: 11/06/2022]
Abstract
Functions of protein molecules in nature are closely associated with their well-defined three-dimensional structures and dynamics in body fluid. So far, many efforts have been made to reveal the relation of protein structure, dynamics, and function, but the structural origin of protein dynamics, especially for secondary structures as building blocks of conformation transition, is still ambiguous. Here we theoretically uncover the collective vibrations of elastic poly-alanine α-helices and find vibration patterns that are distinctively different over residue numbers ranging from 20 to 80. Contrary to the decreasing vibration magnitude from ends to the middle region for short helices, the vibration magnitude for long helices takes the minimum at approximately 1/5 of helix length from ends but reaches a peak at the center. Further analysis indicates that major vibrational modes of helical structures strongly depend on their residue numbers, where the twist mode dominates in the vibrations of short helices while the bend mode dominates the long ones analogous to an elastic Euler beam. The helix-coil transition pathway is also affected by the alternation of the first-order mode in helices with different lengths. The dynamic properties of the helical polypeptides are promising to be harnessed for de novo design of protein-based materials and artificial biomolecules in clinical treatments.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Southeast University, School of Mechanical Engineering, School of Mechanical Engineering, No. 2, Southeast University Road, 211189, Nanjing, CHINA
| | - Mu Chen
- Southeast University, School of Mechanical Engineering, CHINA
| | - Lijian Zhan
- Southeast University, School of Mechanical Engineering, CHINA
| | - Fei Zheng
- Southeast University, School of Mechanical Engineering, CHINA
| | - Wei Si
- Southeast University, School of Mechanical Engineering, CHINA
| | - Jingjie Sha
- Southeast University, School of Mechanical Engineering, CHINA
| | | |
Collapse
|
3
|
Farley KA, Koos MRM, Che Y, Horst R, Limberakis C, Bellenger J, Lira R, Gil-Silva LF, Gil RR. Cross-Linked Poly-4-Acrylomorpholine: A Flexible and Reversibly Compressible Aligning Gel for Anisotropic NMR Analysis of Peptides and Small Molecules in Water. Angew Chem Int Ed Engl 2021; 60:26314-26319. [PMID: 34609778 DOI: 10.1002/anie.202106794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 11/07/2022]
Abstract
Determination of the solution conformation of both small organic molecules and peptides in water remains a substantial hurdle in using NMR solution conformations to guide drug design due to the lack of easy to use alignment media. Herein we report the design of a flexible compressible chemically cross-linked poly-4-acrylomorpholine gel that can be used for the alignment of both small molecules and cyclic peptides in water. To test the new gel, residual dipolar couplings (RDCs) and J-coupling constants were used in the configurational analysis of strychnine hydrochloride, a molecule that has been studied extensively in organic solvents as well as a small cyclic peptide that is known to form an α-helix in water. The conformational ensembles for each molecule with the best fit to the data are reported. Identification of minor conformers in water that cannot easily be determined by conventional NOE measurements will facilitate the use of RDC experiments in structure-based drug design.
Collapse
Affiliation(s)
- Kathleen A Farley
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Martin R M Koos
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Ye Che
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Reto Horst
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Chris Limberakis
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Justin Bellenger
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Ricardo Lira
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | | | - Roberto R Gil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
4
|
Farley KA, Koos MRM, Che Y, Horst R, Limberakis C, Bellenger J, Lira R, Gil‐Silva LF, Gil RR. Cross‐Linked Poly‐4‐Acrylomorpholine: A Flexible and Reversibly Compressible Aligning Gel for Anisotropic NMR Analysis of Peptides and Small Molecules in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Martin R. M. Koos
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Ye Che
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | - Reto Horst
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | - Chris Limberakis
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | - Justin Bellenger
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | - Ricardo Lira
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | | | - Roberto R. Gil
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
5
|
López‐García P, de Araujo AD, Bergues‐Pupo AE, Tunn I, Fairlie DP, Blank KG. Fortified Coiled Coils: Enhancing Mechanical Stability with Lactam or Metal Staples. Angew Chem Int Ed Engl 2021; 60:232-236. [PMID: 32940968 PMCID: PMC7821110 DOI: 10.1002/anie.202006971] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Indexed: 12/19/2022]
Abstract
Coiled coils (CCs) are powerful supramolecular building blocks for biomimetic materials, increasingly used for their mechanical properties. Here, we introduce helix-inducing macrocyclic constraints, so-called staples, to tune thermodynamic and mechanical stability of CCs. We show that thermodynamic stabilization of CCs against helix uncoiling primarily depends on the number of staples, whereas staple positioning controls CC mechanical stability. Inserting a covalent lactam staple at one key force application point significantly increases the barrier to force-induced CC dissociation and reduces structural deformity. A reversible His-Ni2+ -His metal staple also increases CC stability, but ruptures upon mechanical loading to allow helix uncoiling. Staple type, position and number are key design parameters in using helical macrocyclic templates for fine-tuning CC properties in emerging biomaterials.
Collapse
Affiliation(s)
- Patricia López‐García
- Mechano(bio)chemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Aline D. de Araujo
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQld4072Australia
| | - Ana E. Bergues‐Pupo
- Department of Theory and Bio-SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Present address: Berlin Institute for Medical Systems BiologyMax Delbrück Center for Molecular Medicine10115BerlinGermany
| | - Isabell Tunn
- Mechano(bio)chemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - David P. Fairlie
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQld4072Australia
| | - Kerstin G. Blank
- Mechano(bio)chemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
6
|
López‐García P, Araujo AD, Bergues‐Pupo AE, Tunn I, Fairlie DP, Blank KG. Mechanische Verstärkung von Coiled Coils mit Lactam und Histidin‐Metall‐Klammern. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Patricia López‐García
- Mechano(bio)chemie Max-Planck-Institut für Kolloid- und Grenzflächenforschung Am Mühlenberg 1 14476 Potsdam Deutschland
| | - Aline D. Araujo
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane Qld 4072 Australien
| | - Ana E. Bergues‐Pupo
- Abteilung für Theorie und Bio-Systeme Max-Planck-Institut für Kolloid- und Grenzflächenforschung Am Mühlenberg 1 14476 Potsdam Deutschland
- Aktuelle Adresse: Berlin Institute for Medical Systems Biology Max-Delbrück-Centrum für Molekulare Medizin 10115 Berlin Deutschland
| | - Isabell Tunn
- Mechano(bio)chemie Max-Planck-Institut für Kolloid- und Grenzflächenforschung Am Mühlenberg 1 14476 Potsdam Deutschland
| | - David P. Fairlie
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane Qld 4072 Australien
| | - Kerstin G. Blank
- Mechano(bio)chemie Max-Planck-Institut für Kolloid- und Grenzflächenforschung Am Mühlenberg 1 14476 Potsdam Deutschland
| |
Collapse
|
7
|
Horsfall AJ, Dunning KR, Keeling KL, Scanlon DB, Wegener KL, Abell AD. A Bimane‐Based Peptide Staple for Combined Helical Induction and Fluorescent Imaging. Chembiochem 2020; 21:3423-3432. [DOI: 10.1002/cbic.202000485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Aimee J. Horsfall
- The Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Kylie R. Dunning
- The ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Robinson Research Institute, Adelaide Medical School The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Kelly L. Keeling
- The Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Denis B. Scanlon
- The Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Kate L. Wegener
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- School of Biological Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Andrew D. Abell
- The Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
| |
Collapse
|
8
|
Hetherington K, Hegedus Z, Edwards TA, Sessions RB, Nelson A, Wilson AJ. Stapled Peptides as HIF-1α/p300 Inhibitors: Helicity Enhancement in the Bound State Increases Inhibitory Potency. Chemistry 2020; 26:7638-7646. [PMID: 32307728 PMCID: PMC7318359 DOI: 10.1002/chem.202000417] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/13/2020] [Indexed: 12/17/2022]
Abstract
Protein-protein interactions (PPIs) control virtually all cellular processes and have thus emerged as potential targets for development of molecular therapeutics. Peptide-based inhibitors of PPIs are attractive given that they offer recognition potency and selectivity features that are ideal for function, yet, they do not predominantly populate the bioactive conformation, frequently suffer from poor cellular uptake and are easily degraded, for example, by proteases. The constraint of peptides in a bioactive conformation has emerged as a promising strategy to mitigate against these liabilities. In this work, using peptides derived from hypoxia-inducible factor 1 (HIF-1α) together with dibromomaleimide stapling, we identify constrained peptide inhibitors of the HIF-1α/p300 interaction that are more potent than their unconstrained sequences. Contrary to expectation, the increased potency does not correlate with an increased population of an α-helical conformation in the unbound state as demonstrated by experimental circular dichroism analysis. Rather, the ability of the peptide to adopt a bioactive α-helical conformation in the p300 bound state is better supported in the constrained variant as demonstrated by molecular dynamics simulations and circular dichroism difference spectra.
Collapse
Affiliation(s)
- Kristina Hetherington
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Zsofia Hegedus
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Thomas A. Edwards
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Richard B. Sessions
- School of BiochemistryUniversity of BristolMedical Sciences Building, University WalkBristolBS8 1TDUK
- BrisSynBioUniversity of Bristol, Life Sciences BuildingTyndall AvenueBristolBS8 1TQUK
| | - Adam Nelson
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Andrew J. Wilson
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| |
Collapse
|
9
|
Hoang HN, Wu C, Hill TA, Dantas de Araujo A, Bernhardt PV, Liu L, Fairlie DP. A Novel Long‐Range n to π* Interaction Secures the Smallest known α‐Helix in Water. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Huy N. Hoang
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Chongyang Wu
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Timothy A. Hill
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Aline Dantas de Araujo
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane Qld 4072 Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
10
|
Hoang HN, Wu C, Hill TA, Dantas de Araujo A, Bernhardt PV, Liu L, Fairlie DP. A Novel Long-Range n to π* Interaction Secures the Smallest known α-Helix in Water. Angew Chem Int Ed Engl 2019; 58:18873-18877. [PMID: 31625253 DOI: 10.1002/anie.201911277] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/10/2019] [Indexed: 12/17/2022]
Abstract
The introduction of an amide bond linking side chains of the first and fifth amino acids forms a cyclic pentapeptide that optimally stabilizes the smallest known α-helix in water. The origin of the stabilization is unclear. The observed dependence of α-helicity on the solvent and cyclization linker led us to discover a novel long-range n to π* interaction between a main-chain amide oxygen and a uniquely positioned carbonyl group in the linker of cyclic pentapeptides. CD and NMR spectra, NMR and X-ray structures, modelling, and MD simulations reveal that this first example of a synthetically incorporated long-range n to π* CO⋅⋅⋅Cγ =Ο interaction uniquely enforces an almost perfect and remarkably stable peptide α-helix in water but not in DMSO. This unusual interaction with a covalent amide bond outside the helical backbone suggests new approaches to synthetically stabilize peptide structures in water.
Collapse
Affiliation(s)
- Huy N Hoang
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chongyang Wu
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Timothy A Hill
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Aline Dantas de Araujo
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
11
|
Wu H, Acharyya A, Wu Y, Liu L, Jo H, Gai F, DeGrado WF. Design of a Short Thermally Stable α-Helix Embedded in a Macrocycle. Chembiochem 2018; 19:902-906. [PMID: 29417711 PMCID: PMC6512792 DOI: 10.1002/cbic.201800026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Indexed: 12/12/2022]
Abstract
Although helices play key roles in peptide-protein and protein-protein interactions, the helical conformation is generally unstable for short peptides (10-15 residues) in aqueous solution in the absence of their binding partners. Thus, stabilizing the helical conformation of peptides can lead to increases in binding potency, specificity, and stability towards proteolytic degradation. Helices have been successfully stabilized by introducing side chain-to-side chain crosslinks within the central portion of the helix. However, this approach leaves the ends of the helix free, thus leading to fraying and exposure of the non-hydrogen-bonded amide groups to solvent. Here, we develop a "capped-strapped" peptide strategy to stabilize helices by embedding the entire length of the helix within a macrocycle, which also includes a semirigid organic template as well as end-capping interactions. We have designed a ten-residue capped-strapped helical peptide that behaves like a miniprotein, with a cooperative thermal unfolding transition and Tm ≈70 °C, unprecedented for helical peptides of this length. The NMR structure determination confirmed the design, and X-ray crystallography revealed a novel quaternary structure with implications for foldamer design.
Collapse
Affiliation(s)
- Haifan Wu
- Department of Pharmaceutical Chemistry, University of
California San Francisco, CA 94158 (USA)
| | - Arusha Acharyya
- Department of Chemistry, University of Pennsylvania
Philadelphia, PA 19104 (USA)
| | - Yibing Wu
- Department of Pharmaceutical Chemistry, University of
California San Francisco, CA 94158 (USA)
| | - Lijun Liu
- DLX Scientific Lawrence, KS 66049 (USA)
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of
California San Francisco, CA 94158 (USA)
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania
Philadelphia, PA 19104 (USA)
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of
California San Francisco, CA 94158 (USA)
| |
Collapse
|
12
|
Wang J, Zha M, Fei Q, Liu W, Zhao Y, Wu C. Peptide Macrocycles Developed from Precisely Regulated Multiple Cyclization of Unprotected Peptides. Chemistry 2017; 23:15150-15155. [DOI: 10.1002/chem.201703139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Jinghui Wang
- Department of Chemistry; College of Chemistry and Chemical Engineering; State Key Laboratory of Physical Chemistry of Solid Surfaces; The MOE Key Laboratory of Spectrochemical; Analysis and Instrumentation; Xiamen University; Xiamen 361005 P.R. China
| | - Mirao Zha
- Department of Chemistry; College of Chemistry and Chemical Engineering; State Key Laboratory of Physical Chemistry of Solid Surfaces; The MOE Key Laboratory of Spectrochemical; Analysis and Instrumentation; Xiamen University; Xiamen 361005 P.R. China
| | - Qianran Fei
- Department of Chemistry; College of Chemistry and Chemical Engineering; State Key Laboratory of Physical Chemistry of Solid Surfaces; The MOE Key Laboratory of Spectrochemical; Analysis and Instrumentation; Xiamen University; Xiamen 361005 P.R. China
| | - Weidong Liu
- Department of Chemistry; College of Chemistry and Chemical Engineering; State Key Laboratory of Physical Chemistry of Solid Surfaces; The MOE Key Laboratory of Spectrochemical; Analysis and Instrumentation; Xiamen University; Xiamen 361005 P.R. China
| | - Yibing Zhao
- Department of Chemistry; College of Chemistry and Chemical Engineering; State Key Laboratory of Physical Chemistry of Solid Surfaces; The MOE Key Laboratory of Spectrochemical; Analysis and Instrumentation; Xiamen University; Xiamen 361005 P.R. China
| | - Chuanliu Wu
- Department of Chemistry; College of Chemistry and Chemical Engineering; State Key Laboratory of Physical Chemistry of Solid Surfaces; The MOE Key Laboratory of Spectrochemical; Analysis and Instrumentation; Xiamen University; Xiamen 361005 P.R. China
| |
Collapse
|
13
|
Beekman AM, O'Connell MA, Howell LA. Peptide-Directed Binding for the Discovery of Modulators of α-Helix-Mediated Protein-Protein Interactions: Proof-of-Concept Studies with the Apoptosis Regulator Mcl-1. Angew Chem Int Ed Engl 2017; 56:10446-10450. [PMID: 28670766 PMCID: PMC5577515 DOI: 10.1002/anie.201705008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/15/2017] [Indexed: 02/02/2023]
Abstract
Targeting PPIs with small molecules can be challenging owing to large, hydrophobic binding surfaces. Herein, we describe a strategy that exploits selective α-helical PPIs, transferring these characteristics to small molecules. The proof of concept is demonstrated with the apoptosis regulator Mcl-1, commonly exploited by cancers to avoid cell death. Peptide-directed binding uses few synthetic transformations, requires the production of a small number of compounds, and generates a high percentage of hits. In this example, about 50 % of the small molecules prepared showed an IC50 value of less than 100 μm, and approximately 25 % had IC50 values below 1 μm to Mcl-1. Compounds show selectivity for Mcl-1 over other anti-apoptotic proteins, possess cytotoxicity to cancer cell lines, and induce hallmarks of apoptosis. This approach represents a novel and economic process for the rapid discovery of new α-helical PPI modulators.
Collapse
Affiliation(s)
- Andrew Michael Beekman
- School of PharmacyUniversity of East AngliaNorwich Research Park, NorwichNorfolkNR4 7TJUK
| | - Maria Anne O'Connell
- School of PharmacyUniversity of East AngliaNorwich Research Park, NorwichNorfolkNR4 7TJUK
| | - Lesley Ann Howell
- School of PharmacyUniversity of East AngliaNorwich Research Park, NorwichNorfolkNR4 7TJUK
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
14
|
Beekman AM, O'Connell MA, Howell LA. Peptide-Directed Binding for the Discovery of Modulators of α-Helix-Mediated Protein-Protein Interactions: Proof-of-Concept Studies with the Apoptosis Regulator Mcl-1. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Andrew Michael Beekman
- School of Pharmacy; University of East Anglia; Norwich Research Park, Norwich Norfolk NR4 7TJ UK
| | - Maria Anne O'Connell
- School of Pharmacy; University of East Anglia; Norwich Research Park, Norwich Norfolk NR4 7TJ UK
| | - Lesley Ann Howell
- School of Pharmacy; University of East Anglia; Norwich Research Park, Norwich Norfolk NR4 7TJ UK
- School of Biological and Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| |
Collapse
|