1
|
Manick AD, Li C, Antonetti E, Albalat M, Cotelle Y, Nava P, Dutasta JP, Chatelet B, Martinez A. Probing the Importance of Host Symmetry on Carbohydrate Recognition. Chemistry 2023; 29:e202203212. [PMID: 36563113 DOI: 10.1002/chem.202203212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 12/24/2022]
Abstract
The design of molecular cages with low symmetry could allow for more specific tuning of their properties and better mimic the unsymmetrical and complex environment of protein pockets. However, the added value of lowering symmetry of molecular receptors has been rarely demonstrated. Herein, C3 - and C1 -symmetrical cages, presenting the same recognition sites, have been synthesized and investigated as hosts for carbohydrate recognition. Structurally related derivatives of glucose, galactose and mannose were found to have greater affinity to the receptor with the lowest symmetry than to their C3 -symmetrical analogue. According to the host cavity modelling, the C1 symmetry receptor exhibits a wider opening than its C3 -symmetrical counterpart, providing easier access and thus promoting guest proximity to binding sites. Moreover, our results show the high stereo- and substrate selectivity of the C1 symmetry cage with respect to its C3 counterpart in the recognition of sugars.
Collapse
Affiliation(s)
- Anne-Doriane Manick
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Chunyang Li
- School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China.,Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Elise Antonetti
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Muriel Albalat
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Yoann Cotelle
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Paola Nava
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Jean-Pierre Dutasta
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364, Lyon, France
| | - Bastien Chatelet
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Alexandre Martinez
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| |
Collapse
|
2
|
Milanesi F, Unione L, Ardá A, Nativi C, Jiménez-Barbero J, Roelens S, Francesconi O. Biomimetic Tweezers for N-Glycans: Selective Recognition of the Core GlcNAc 2 Disaccharide of the Sialylglycopeptide SGP. Chemistry 2023; 29:e202203591. [PMID: 36597924 DOI: 10.1002/chem.202203591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
In recent years, glycomics have shown how pervasive the role of carbohydrates in biological systems is and how chemical tools are essential to investigate glycan function and modulate carbohydrate-mediated processes. Biomimetic receptors for carbohydrates can carry out this task but, although significant affinities and selectivities toward simple saccharides have been achieved, targeting complex glycoconjugates remains a goal yet unattained. In this work we report the unprecedented recognition of a complex biantennary sialylglycopeptide (SGP) by a tweezers-shaped biomimetic receptor, which selectively binds to the core GlcNAc2 disaccharide of the N-glycan with an affinity of 170 μM. Because of the simple structure and the remarkable binding ability, this biomimetic receptor can represent a versatile tool for glycoscience, opening the way to useful applications.
Collapse
Affiliation(s)
- Francesco Milanesi
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, University of Florence, Polo Scientifico e Tecnologico, I-50019 Sesto Fiorentino, Firenze, Italy.,Magnetic Resonance Center CERM, University of Florence, Via L. Sacconi 6, I-50019, Sesto Fiorentino, Firenze, Italy
| | - Luca Unione
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Bizkaia, Spain
| | - Ana Ardá
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Bizkaia, Spain
| | - Cristina Nativi
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, University of Florence, Polo Scientifico e Tecnologico, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Jesús Jiménez-Barbero
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Bizkaia, Spain.,Department of Organic Chemistry, II Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940, Leioa, Spain.,Centro de Investigación Biomédica En Red de Enfermedades Respiratorias, Madrid, Spain
| | - Stefano Roelens
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, University of Florence, Polo Scientifico e Tecnologico, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Oscar Francesconi
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, University of Florence, Polo Scientifico e Tecnologico, I-50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
3
|
Bhandari P, Mukherjee PS. Post‐Synthesis Conversion of an Unstable Imine Cage to a Stable Cage with Amide Moieties Towards Selective Receptor for Fluoride. Chemistry 2022; 28:e202201901. [DOI: 10.1002/chem.202201901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Pallab Bhandari
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
4
|
Thakur K, Shlain MA, Marianski M, Braunschweig AB. Regiochemical Effects on the Carbohydrate Binding and Selectivity of Flexible Synthetic Carbohydrate Receptors with Indole and Quinoline Heterocyclic Groups. European J Org Chem 2021; 2021:5262-5274. [PMID: 35694139 PMCID: PMC9186342 DOI: 10.1002/ejoc.202100763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 08/07/2023]
Abstract
Synthetic carbohydrate receptors (SCRs) that bind cell-surface carbohydrates could be used for disease detection, drug-delivery, and therapeutics, or for the site-selective modification of complex carbohydrates but their potential has not been realized because of remaining challenges associated with binding affinity and substrate selectivity. We have reported recently a series of flexible SCRs based upon a biaryl core with four pendant heterocyclic groups that bind glycans selectively through noncovalent interactions. Here we continue to explore the role of heterocycles on substrate selectivity by expanding our library to include a series of indole and quinoline heterocycles that vary in their regiochemistry of attachment to the biaryl core. The binding of these SCRs to a series of biologically-relevant carbohydrates was studied by 1H NMR titrations in CD2Cl2 and density-functional theory calculations. We find SCR030, SCR034 and SCR037 are selective, SCR031, SCR032, and SCR039 are strong binders, and SCR033, SCR035, SCR036, and SCR038 are promiscuous and bind weakly. Computational analysis reveals the importance of C-H⋯π and H-bonding interactions in defining the binding properties of these new receptors. By combining these data with those obtained from our previous studies on this class of flexible SCRs, we develop a series of design rules that account for the binding of all SCRs of this class and anticipate the binding of future, not-yet imagined tetrapodal SCRs.
Collapse
Affiliation(s)
- Khushabu Thakur
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York 85 St Nicholas Terrace, New York, NY 10031 (USA)
- Department of Chemistry and Biochemistry, Hunter College 695 Park Ave, New York, NY 10065 (USA)
| | - Milan A Shlain
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York 85 St Nicholas Terrace, New York, NY 10031 (USA)
- Department of Chemistry and Biochemistry, Hunter College 695 Park Ave, New York, NY 10065 (USA)
| | - Mateusz Marianski
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York 85 St Nicholas Terrace, New York, NY 10031 (USA)
- Department of Chemistry and Biochemistry, Hunter College 695 Park Ave, New York, NY 10065 (USA)
- The PhD Program in Chemistry, The Graduate Center of the City University of New York, 365 5 Ave, New York, NY 10016 (USA)
- The PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 5 Ave, New York, NY 10016 (USA)
| | - Adam B Braunschweig
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York 85 St Nicholas Terrace, New York, NY 10031 (USA)
- Department of Chemistry and Biochemistry, Hunter College 695 Park Ave, New York, NY 10065 (USA)
- The PhD Program in Chemistry, The Graduate Center of the City University of New York, 365 5 Ave, New York, NY 10016 (USA)
- The PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 5 Ave, New York, NY 10016 (USA)
| |
Collapse
|
5
|
Schaapkens X, van Sluis RN, Bobylev EO, Reek JNH, Mooibroek TJ. A Water Soluble Pd 2 L 4 Cage for Selective Binding of Neu5Ac. Chemistry 2021; 27:13719-13724. [PMID: 34486179 PMCID: PMC8518546 DOI: 10.1002/chem.202102176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 11/30/2022]
Abstract
The sialic acid N-acetylneuraminic acid (Neu5Ac) and its derivatives are involved in many biological processes including cell-cell recognition and infection by influenza. Molecules that can recognize Neu5Ac might thus be exploited to intervene in or monitor such events. A key obstacle in this development is the sparse availability of easily prepared molecules that bind to this carbohydrate in its natural solvent; water. Here, we report that the carbohydrate binding pocket of an organic soluble [Pd2 L4 ]4+ cage could be equipped with guanidinium-terminating dendrons to give the water soluble [Pd2 L4 ][NO3 ]16 cage 7. It was shown by means of NMR spectroscopy that 7 binds selectively to anionic monosaccharides and strongest to Neu5Ac with Ka =24 M-1 . The cage had low to no affinity for the thirteen neutral saccharides studied. Aided by molecular modeling, the selectivity for anionic carbohydrates such as Neu5Ac could be rationalized by the presence of charge assisted hydrogen bonds and/or the presence of a salt bridge with a guanidinium solubilizing arm of 7. Establishing that a simple coordination cage such as 7 can already selectively bind to Neu5Ac in water paves the way to improve the stability, affinity and/or selectivity properties of M2 L4 cages for carbohydrates and other small molecules.
Collapse
Affiliation(s)
- Xander Schaapkens
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| | - Roy N. van Sluis
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| | - Eduard O. Bobylev
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| | - Joost N. H. Reek
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| | - Tiddo J. Mooibroek
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| |
Collapse
|
6
|
Timmer BJJ, Mooibroek TJ. A Simple Strategy to Obtain Synthetic Ca
2+
‐Dependent Lectin Mimics. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Brian J. J. Timmer
- Van ‘t Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Tiddo J. Mooibroek
- Van ‘t Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
7
|
Ferguson Johns HP, Harrison EE, Stingley KJ, Waters ML. Mimicking Biological Recognition: Lessons in Binding Hydrophilic Guests in Water. Chemistry 2021; 27:6620-6644. [PMID: 33048395 DOI: 10.1002/chem.202003759] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 01/25/2023]
Abstract
Selective molecular recognition of hydrophilic guests in water plays a fundamental role in a vast number of biological processes, but synthetic mimicry of biomolecular recognition in water still proves challenging both in terms of achieving comparable affinities and selectivities. This Review highlights strategies that have been developed in the field of supramolecular chemistry to selectively and non-covalently bind three classes of biologically relevant molecules: nucleotides, carbohydrates, and amino acids. As several groups have systematically modified receptors for a specific guest, an evolutionary perspective is also provided in some cases. Trends in the most effective binding forces for each class are described, providing insight into selectivity and potential directions for future work.
Collapse
Affiliation(s)
- Hannah P Ferguson Johns
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Emily E Harrison
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kyla J Stingley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Marcey L Waters
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
8
|
Estevez A, Zhu D, Blankenship C, Jiang J. Molecular Interrogation to Crack the Case of O-GlcNAc. Chemistry 2020; 26:12086-12100. [PMID: 32207184 PMCID: PMC7724648 DOI: 10.1002/chem.202000155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/28/2020] [Indexed: 12/25/2022]
Abstract
The O-linked β-N-acetylglucosamine (O-GlcNAc) modification, termed O-GlcNAcylation, is an essential and dynamic post-translational modification in cells. O-GlcNAc transferase (OGT) installs this modification on serine and threonine residues, whereas O-GlcNAcase (OGA) hydrolyzes it. O-GlcNAc modifications are found on thousands of intracellular proteins involved in diverse biological processes. Dysregulation of O-GlcNAcylation and O-GlcNAc cycling enzymes has been detected in many diseases, including cancer, diabetes, cardiovascular and neurodegenerative diseases. Here, recent advances in the development of molecular tools to investigate OGT and OGA functions and substrate recognition are discussed. New chemical approaches to study O-GlcNAc dynamics and its potential roles in the immune system are also highlighted. It is hoped that this minireview will encourage more research in these areas to advance the understanding of O-GlcNAc in biology and diseases.
Collapse
Affiliation(s)
- Arielis Estevez
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Dongsheng Zhu
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Connor Blankenship
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
9
|
Kroezen BS, Conti G, Girardi B, Cramer J, Jiang X, Rabbani S, Müller J, Kokot M, Luisoni E, Ricklin D, Schwardt O, Ernst B. A Potent Mimetic of the Siglec-8 Ligand 6'-Sulfo-Sialyl Lewis x. ChemMedChem 2020; 15:1706-1719. [PMID: 32744401 DOI: 10.1002/cmdc.202000417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 12/15/2022]
Abstract
Siglecs are members of the immunoglobulin gene family containing sialic acid binding N-terminal domains. Among them, Siglec-8 is expressed on various cell types of the immune system such as eosinophils, mast cells and weakly on basophils. Cross-linking of Siglec-8 with monoclonal antibodies triggers apoptosis in eosinophils and inhibits degranulation of mast cells, making Siglec-8 a promising target for the treatment of eosinophil- and mast cell-associated diseases such as asthma. The tetrasaccharide 6'-sulfo-sialyl Lewisx has been identified as a specific Siglec-8 ligand in glycan array screening. Here, we describe an extended study enlightening the pharmacophores of 6'-sulfo-sialyl Lewisx and the successful development of a high-affinity mimetic. Retaining the neuraminic acid core, the introduction of a carbocyclic mimetic of the Gal moiety and a sulfonamide substituent in the 9-position gave a 20-fold improved binding affinity. Finally, the residence time, which usually is the Achilles tendon of carbohydrate/lectin interactions, could be improved.
Collapse
Affiliation(s)
- Blijke S Kroezen
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Gabriele Conti
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Benedetta Girardi
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Jonathan Cramer
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Xiaohua Jiang
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Said Rabbani
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Jennifer Müller
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Maja Kokot
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Enrico Luisoni
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Daniel Ricklin
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Oliver Schwardt
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Beat Ernst
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| |
Collapse
|
10
|
Zheng R, Wang Y, Pan J, Malik HA, Zhang H, Jia C, Weng X, Xie J, Deng L. Toward Easy-to-Assemble, Large-Area Smart Windows: All-in-One Cross-Linked Electrochromic Material and Device. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27526-27536. [PMID: 32423198 DOI: 10.1021/acsami.0c02337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conventional electrochromic devices with a sandwich structure consist of multiple interfaces, which enhance electron trapping on the interfaces. Furthermore, crack generation in the electrochromic layer is inevitable due to repeated ion insertion and extraction during the service process. These problems increase the fabrication complexity and lead to poor performance and stability, which are severely limiting and prime concerns for the future development of the electrochromism field. Here, a strategy of synthesizing an all-in-one self-healing electrochromic material, TAFPy-MA, is presented, which has been utilized for the fabrication of a high-reliability, large-scale, and easy-assembly smart electrochromic window. The all-in-one self-healing electrochromic material can undergo in situ redox reactions with Li+ ions to reduce resistance transfer and avoid interface obstacles, and the reversible Diels-Alder cross-linking network structure can heal the cracks to improve the reliability of the electrochromic layer. High ion diffusivity (1.13 × 10-5 cm2 s-1), rapid color switching (3.9/3.7 s), high coloration efficiency (413 cm2 C-1), excellent stability (sustains 88.7% after 1000 cycles) and reliability (crack can be healed in 110 s), and large-scale smart windows (30 × 35 cm2) are achieved using the all-in-one electrochromic material, which exhibits fascinating and promising features for a wide range of applications in buildings, airplanes, etc.
Collapse
Affiliation(s)
- Rongzong Zheng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Yi Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Jianbo Pan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Haseeb Ashraf Malik
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Hongping Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Chunyang Jia
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Xiaolong Weng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Jianliang Xie
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Longjiang Deng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| |
Collapse
|
11
|
Duan H, Li Y, Li Q, Wang P, Liu X, Cheng L, Yu Y, Cao L. Host–Guest Recognition and Fluorescence of a Tetraphenylethene‐Based Octacationic Cage. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912730] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Honghong Duan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710069 P. R. China
| | - Yawen Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710069 P. R. China
| | - Qingfang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710069 P. R. China
| | - Pinpin Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710069 P. R. China
| | - Xueru Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710069 P. R. China
| | - Lin Cheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710069 P. R. China
| | - Yang Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710069 P. R. China
| | - Liping Cao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710069 P. R. China
| |
Collapse
|
12
|
Duan H, Li Y, Li Q, Wang P, Liu X, Cheng L, Yu Y, Cao L. Host-Guest Recognition and Fluorescence of a Tetraphenylethene-Based Octacationic Cage. Angew Chem Int Ed Engl 2020; 59:10101-10110. [PMID: 31692185 DOI: 10.1002/anie.201912730] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Indexed: 12/19/2022]
Abstract
We report the synthesis and characterization of a three-dimensional tetraphenylethene-based octacationic cage that shows host-guest recognition of polycyclic aromatic hydrocarbons (e.g. coronene) in organic media and water-soluble dyes (e.g. sulforhodamine 101) in aqueous media through CH⋅⋅⋅π, π-π, and/or electrostatic interactions. The cage⊃coronene exhibits a cuboid internal cavity with a size of approximately 17.2×11.0×6.96 Å3 and a "hamburger"-type host-guest complex, which is hierarchically stacked into 1D nanotubes and a 3D supramolecular framework. The free cage possesses a similar cavity in the crystalline state. Furthermore, a host-guest complex formed between the octacationic cage and sulforhodamine 101 had a higher absolute quantum yield (ΦF =28.5 %), larger excitation-emission gap (Δλex-em =211 nm), and longer emission lifetime (τ=7.0 ns) as compared to the guest (ΦF =10.5 %; Δλex-em =11 nm; τ=4.9 ns), and purer emission (ΔλFWHM =38 nm) as compared to the host (ΔλFWHM =111 nm).
Collapse
Affiliation(s)
- Honghong Duan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Yawen Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Qingfang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Pinpin Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Xueru Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Lin Cheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Yang Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Liping Cao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| |
Collapse
|
13
|
Yin X, Li W, Yu B. Synthesis of Pashinintide A, a Natural Cyclic Hexapeptide Supposedly Capable of Forming a Complex with Sucrose. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.201900663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xuejian Yin
- State Key Laboratory of Bioorganic and Natural Products Chemistry Shanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Wei Li
- Department of Medicinal ChemistryChina Pharmaceutical University 639 Longmian Avenue, Nanjing Jiangsu 211198 China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Shanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
14
|
Bauzá A, Frontera A, Mooibroek TJ. π-Hole Interactions Involving Nitro Aromatic Ligands in Protein Structures. Chemistry 2019; 25:13436-13443. [PMID: 31453653 PMCID: PMC6856858 DOI: 10.1002/chem.201903404] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Indexed: 01/03/2023]
Abstract
Studying noncanonical intermolecular interactions between a ligand and a protein constitutes an emerging research field. Identifying synthetically accessible molecular fragments that can engage in intermolecular interactions is a key objective in this area. Here, it is shown that so-called "π-hole interactions" are present between the nitro moiety in nitro aromatic ligands and lone pairs within protein structures (water and protein carbonyls and sulfurs). Ample structural evidence was found in a PDB analysis and computations reveal interaction energies of about -5 kcal mol-1 for ligand-protein π-hole interactions. Several examples are highlighted for which a π-hole interaction is implicated in the superior binding affinity or inhibition of a nitro aromatic ligand versus a similar non-nitro analogue. The discovery that π-hole interactions with nitro aromatics are significant within protein structures parallels the finding that halogen bonds are biologically relevant. This has implications for the interpretation of ligand-protein complexation phenomena, for example, involving the more than 50 approved drugs that contain a nitro aromatic moiety.
Collapse
Affiliation(s)
- Antonio Bauzá
- Department of ChemistryUniversitat de les Illes BalearsCrta. de Valldemossa km 7.507122Palma (Baleares)Spain
| | - Antonio Frontera
- Department of ChemistryUniversitat de les Illes BalearsCrta. de Valldemossa km 7.507122Palma (Baleares)Spain
| | - Tiddo Jonathan Mooibroek
- van ‘t Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| |
Collapse
|
15
|
Bhat AS, Elbert SM, Zhang W, Rominger F, Dieckmann M, Schröder RR, Mastalerz M. Transformation of a [4+6] Salicylbisimine Cage to Chemically Robust Amide Cages. Angew Chem Int Ed Engl 2019; 58:8819-8823. [PMID: 30964597 PMCID: PMC6618138 DOI: 10.1002/anie.201903631] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Indexed: 12/29/2022]
Abstract
In recent years, interest in shape-persistent organic cage compounds has steadily increased, not least because dynamic covalent bond formation enables such structures to be made in high to excellent yields. One often used type of dynamic bond formation is the generation of an imine bond from an aldehyde and an amine. Although the reversibility of the imine bond formation is advantageous for high yields, it is disadvantageous for the chemical stability of the compounds. Amide bonds are, in contrast to imine bonds much more robust. Shape-persistent amide cages have so far been made by irreversible amide bond formations in multiple steps, very often accompanied by low yields. Here, we present an approach to shape-persistent amide cages by exploiting a high-yielding reversible cage formation in the first step, and a Pinnick oxidation as a key step to access the amide cages in just three steps. These chemically robust amide cages can be further transformed by bromination or nitration to allow post-functionalization in high yields. The impact of the substituents on the gas sorption behavior was also investigated.
Collapse
Affiliation(s)
- Avinash S. Bhat
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Sven M. Elbert
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Wen‐Shan Zhang
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Frank Rominger
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Michael Dieckmann
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Rasmus R. Schröder
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Michael Mastalerz
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| |
Collapse
|
16
|
Bhat AS, Elbert SM, Zhang W, Rominger F, Dieckmann M, Schröder RR, Mastalerz M. Transformation of a [4+6] Salicylbisimine Cage to Chemically Robust Amide Cages. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Avinash S. Bhat
- Organisch-Chemisches InstitutRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Centre for Advanced MaterialsRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Sven M. Elbert
- Organisch-Chemisches InstitutRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Centre for Advanced MaterialsRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Wen‐Shan Zhang
- Centre for Advanced MaterialsRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches InstitutRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Michael Dieckmann
- Organisch-Chemisches InstitutRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Rasmus R. Schröder
- Centre for Advanced MaterialsRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Michael Mastalerz
- Organisch-Chemisches InstitutRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Centre for Advanced MaterialsRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| |
Collapse
|
17
|
Francesconi O, Roelens S. Biomimetic Carbohydrate‐Binding Agents (CBAs): Binding Affinities and Biological Activities. Chembiochem 2019; 20:1329-1346. [DOI: 10.1002/cbic.201800742] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Oscar Francesconi
- Department of Chemistry and INSTMUniversity of Florence Polo Scientifico e Tecnologico 50019 Sesto Fiorentino, Firenze Italy
| | - Stefano Roelens
- Department of Chemistry and INSTMUniversity of Florence Polo Scientifico e Tecnologico 50019 Sesto Fiorentino, Firenze Italy
| |
Collapse
|
18
|
Zhao QY, Zhao HT, Yang X, Zhang H, Dong AJ, Wang J, Li B. Selective recognition and fast enrichment of anthocyanins by dummy molecularly imprinted magnetic nanoparticles. J Chromatogr A 2018; 1572:9-19. [DOI: 10.1016/j.chroma.2018.08.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/25/2018] [Accepted: 08/12/2018] [Indexed: 02/04/2023]
|
19
|
Palanichamy K, Bravo MF, Shlain MA, Schiro F, Naeem Y, Marianski M, Braunschweig AB. Binding Studies on a Library of Induced‐Fit Synthetic Carbohydrate Receptors with Mannoside Selectivity. Chemistry 2018; 24:13971-13982. [DOI: 10.1002/chem.201803317] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Kalanidhi Palanichamy
- Nanoscience Initiative Advanced Science Research Center at, The Graduate Center of the City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - M. Fernando Bravo
- Nanoscience Initiative Advanced Science Research Center at, The Graduate Center of the City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
- The Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA
| | - Milan A. Shlain
- Nanoscience Initiative Advanced Science Research Center at, The Graduate Center of the City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Frank Schiro
- Nanoscience Initiative Advanced Science Research Center at, The Graduate Center of the City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Yasir Naeem
- Nanoscience Initiative Advanced Science Research Center at, The Graduate Center of the City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Mateusz Marianski
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
- The Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA
| | - Adam B. Braunschweig
- Nanoscience Initiative Advanced Science Research Center at, The Graduate Center of the City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
- The Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA
- The Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA
| |
Collapse
|
20
|
Francesconi O, Martinucci M, Badii L, Nativi C, Roelens S. A Biomimetic Synthetic Receptor Selectively Recognising Fucose in Water. Chemistry 2018; 24:6828-6836. [DOI: 10.1002/chem.201800390] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Oscar Francesconi
- Department of Chemistry and INSTM; University of Florence, Polo Scientifico e Tecnologico; 50019 Sesto Fiorentino Firenze Italy
| | - Marco Martinucci
- Department of Chemistry and INSTM; University of Florence, Polo Scientifico e Tecnologico; 50019 Sesto Fiorentino Firenze Italy
| | - Lorenzo Badii
- Department of Chemistry and INSTM; University of Florence, Polo Scientifico e Tecnologico; 50019 Sesto Fiorentino Firenze Italy
| | - Cristina Nativi
- Department of Chemistry and INSTM; University of Florence, Polo Scientifico e Tecnologico; 50019 Sesto Fiorentino Firenze Italy
| | - Stefano Roelens
- Department of Chemistry and INSTM; University of Florence, Polo Scientifico e Tecnologico; 50019 Sesto Fiorentino Firenze Italy
| |
Collapse
|
21
|
Samaniego Lopez C, Hebe Martínez J, Uhrig ML, Coluccio Leskow F, Spagnuolo CC. A Highly Sensitive Fluorogenic Probe for Imaging Glycoproteins and Mucine Activity in Live Cells in the Near-Infrared Region. Chemistry 2018; 24:6344-6348. [DOI: 10.1002/chem.201800790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Cecilia Samaniego Lopez
- Departamento de Química Orgánica-CIHIDECAR-CONICET; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Int. Guiraldes 2160 1428 Ciudad de Buenos Aires Argentina
| | - Jimena Hebe Martínez
- IQUIBICEN-CONICET, Departamento de Química Biológica; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Int. Guiraldes 2160 1428 Ciudad de Buenos Aires Argentina
| | - María Laura Uhrig
- Departamento de Química Orgánica-CIHIDECAR-CONICET; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Int. Guiraldes 2160 1428 Ciudad de Buenos Aires Argentina
| | - Federico Coluccio Leskow
- IQUIBICEN-CONICET, Departamento de Química Biológica; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Int. Guiraldes 2160 1428 Ciudad de Buenos Aires Argentina
| | - Carla Cecilia Spagnuolo
- Departamento de Química Orgánica-CIHIDECAR-CONICET; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Int. Guiraldes 2160 1428 Ciudad de Buenos Aires Argentina
| |
Collapse
|
22
|
Ohishi Y, Abe H, Inouye M. Saccharide Recognition and Helix Formation in Water with an Amphiphilic Pyridine-Phenol Alternating Oligomer. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701522] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yuki Ohishi
- Graduate School of Pharmaceutical Sciences; University of Toyama; 930-0194 Toyama Japan
| | - Hajime Abe
- Graduate School of Pharmaceutical Sciences; University of Toyama; 930-0194 Toyama Japan
| | - Masahiko Inouye
- Graduate School of Pharmaceutical Sciences; University of Toyama; 930-0194 Toyama Japan
| |
Collapse
|