1
|
Conrad M, Söldner CA, Miao Y, Sticht H. Agonist Binding and G Protein Coupling in Histamine H 2 Receptor: A Molecular Dynamics Study. Int J Mol Sci 2020; 21:ijms21186693. [PMID: 32932742 PMCID: PMC7554837 DOI: 10.3390/ijms21186693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
The histamine H2 receptor (H2R) plays an important role in the regulation of gastric acid secretion. Therefore, it is a main drug target for the treatment of gastroesophageal reflux or peptic ulcer disease. However, there is as of yet no 3D-structural information available hampering a mechanistic understanding of H2R. Therefore, we created a model of the histamine-H2R-Gs complex based on the structure of the ternary complex of the β2-adrenoceptor and investigated the conformational stability of this active GPCR conformation. Since the physiologically relevant motions with respect to ligand binding and conformational changes of GPCRs can only partly be assessed on the timescale of conventional MD (cMD) simulations, we also applied metadynamics and Gaussian accelerated molecular dynamics (GaMD) simulations. A multiple walker metadynamics simulation in combination with cMD was applied for the determination of the histamine binding mode. The preferential binding pose detected is in good agreement with previous data from site directed mutagenesis and provides a basis for rational ligand design. Inspection of the H2R-Gs interface reveals a network of polar interactions that may contribute to H2R coupling selectivity. The cMD and GaMD simulations demonstrate that the active conformation is retained on a μs-timescale in the ternary histamine-H2R-Gs complex and in a truncated complex that contains only Gs helix α5 instead of the entire G protein. In contrast, histamine alone is unable to stabilize the active conformation, which is in line with previous studies of other GPCRs.
Collapse
Affiliation(s)
- Marcus Conrad
- Bioinformatik, Institut für Biochemie, Emil-Fischer-Centrum, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany; (M.C.); (C.A.S.)
| | - Christian A. Söldner
- Bioinformatik, Institut für Biochemie, Emil-Fischer-Centrum, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany; (M.C.); (C.A.S.)
| | - Yinglong Miao
- Department of Computational Biology and Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA;
| | - Heinrich Sticht
- Bioinformatik, Institut für Biochemie, Emil-Fischer-Centrum, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany; (M.C.); (C.A.S.)
- Correspondence:
| |
Collapse
|
2
|
Ibrahim P, Clark T. Metadynamics simulations of ligand binding to GPCRs. Curr Opin Struct Biol 2019; 55:129-137. [PMID: 31100549 DOI: 10.1016/j.sbi.2019.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/28/2019] [Accepted: 04/05/2019] [Indexed: 11/17/2022]
Abstract
Recent developments in metadynamics simulation techniques for ligand binding to Class A GPCRs are described and the results obtained elucidated. The computational protocol makes good use of modern massively parallel hardware, making simulations of the binding/unbinding process routine. The simulations reveal unprecedented details of the ligand-binding pathways, including multiple binding sites in many cases. Free energies of binding are reproduced very well and the simulations allow prediction of the efficacy (agonist, antagonist etc.) of ligands.
Collapse
Affiliation(s)
- Passainte Ibrahim
- Computer-Chemistry Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Timothy Clark
- Computer-Chemistry Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany.
| |
Collapse
|
3
|
Saleh N, Hucke O, Kramer G, Schmidt E, Montel F, Lipinski R, Ferger B, Clark T, Hildebrand PW, Tautermann CS. Multiple Binding Sites Contribute to the Mechanism of Mixed Agonistic and Positive Allosteric Modulators of the Cannabinoid CB1 Receptor. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201708764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Noureldin Saleh
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health; Institute of Medical Physics and Biophysics; Charitéplatz 1 10117 Berlin Germany
| | - Oliver Hucke
- Department for Medicinal Chemistry; Boehringer Ingelheim Pharma GmbH & Co KG; Birkendorfer Straße 65 88397 Biberach an der Riss Germany
| | - Gert Kramer
- Department for CNS research; Boehringer Ingelheim Pharma GmbH & Co KG; Birkendorfer Straße 65 88397 Biberach an der Riss Germany
| | - Esther Schmidt
- Department for Drug Discovery Sciences; Boehringer Ingelheim Pharma GmbH & Co KG; Birkendorfer Straße 65 88397 Biberach an der Riss Germany
| | - Florian Montel
- Department for Medicinal Chemistry; Boehringer Ingelheim Pharma GmbH & Co KG; Birkendorfer Straße 65 88397 Biberach an der Riss Germany
| | - Radoslaw Lipinski
- Department for Medicinal Chemistry; Boehringer Ingelheim Pharma GmbH & Co KG; Birkendorfer Straße 65 88397 Biberach an der Riss Germany
| | - Boris Ferger
- Department for CNS research; Boehringer Ingelheim Pharma GmbH & Co KG; Birkendorfer Straße 65 88397 Biberach an der Riss Germany
| | - Timothy Clark
- Computer-Chemie-Centrum; Friedrich-Alexander-Universität Erlangen-Nürnberg; Nägelsbachstraße 25 91052 Erlangen Germany
| | - Peter W. Hildebrand
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health; Institute of Medical Physics and Biophysics; Charitéplatz 1 10117 Berlin Germany
- Universität Leipzig; Institute of Medical Physics and Biophysics; Härtelstraße 16-18 04107 Leipzig Germany
| | - Christofer S. Tautermann
- Department for Medicinal Chemistry; Boehringer Ingelheim Pharma GmbH & Co KG; Birkendorfer Straße 65 88397 Biberach an der Riss Germany
| |
Collapse
|
4
|
Saleh N, Hucke O, Kramer G, Schmidt E, Montel F, Lipinski R, Ferger B, Clark T, Hildebrand PW, Tautermann CS. Multiple Binding Sites Contribute to the Mechanism of Mixed Agonistic and Positive Allosteric Modulators of the Cannabinoid CB1 Receptor. Angew Chem Int Ed Engl 2018; 57:2580-2585. [PMID: 29314474 DOI: 10.1002/anie.201708764] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/23/2017] [Indexed: 12/27/2022]
Abstract
The cannabinoid CB1 receptor (CB1R) is an abundant metabotropic G-protein-coupled receptor that has been difficult to address therapeutically because of CNS side effects exerted by orthosteric drug candidates. Recent efforts have focused on developing allosteric modulators that target CB1R. Compounds from the recently discovered class of mixed agonistic and positive allosteric modulators (Ago-PAMs) based on 2-phenylindoles have shown promising functional and binding properties as CB1R ligands. Here, we identify binding modes of both the CP 55,940 agonist and GAT228, a 2-phenylindole allosteric modulator, by using our metadynamics simulation protocol, and quantify their affinity and cooperativity by atomistic simulations. We demonstrate the involvement of multiple adjunct binding sites in the Ago-PAM characteristics of the 2-phenylindole modulators and explain their ability to compete with orthosteric agonists at higher concentrations. We validate these results experimentally by showing the contribution of multiple sites on the allosteric binding of ZCZ011, another homologous member of the class, together with the orthosteric agonist.
Collapse
Affiliation(s)
- Noureldin Saleh
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Institute of Medical Physics and Biophysics, Charitéplatz 1, 10117, Berlin, Germany
| | - Oliver Hucke
- Department for Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Gert Kramer
- Department for CNS research, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Esther Schmidt
- Department for Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Florian Montel
- Department for Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Radoslaw Lipinski
- Department for Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Boris Ferger
- Department for CNS research, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Timothy Clark
- Computer-Chemie-Centrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
| | - Peter W Hildebrand
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Institute of Medical Physics and Biophysics, Charitéplatz 1, 10117, Berlin, Germany.,Universität Leipzig, Institute of Medical Physics and Biophysics, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Christofer S Tautermann
- Department for Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| |
Collapse
|
5
|
Saleh N, Ibrahim P, Clark T. Differences between G-Protein-Stabilized Agonist-GPCR Complexes and their Nanobody-Stabilized Equivalents. Angew Chem Int Ed Engl 2017; 56:9008-9012. [DOI: 10.1002/anie.201702468] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/26/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Noureldin Saleh
- Computer-Chemie-Centrum; Friedrich-Alexander-Universität Erlangen-Nürnberg; Nägelsbachstr. 25 91052 Erlangen Germany
- Present address: Institut für Medizinische Physik und Biophysik; Charité Berlin; Charitéplatz 1 10117 Berlin Germany
| | - Passainte Ibrahim
- Computer-Chemie-Centrum; Friedrich-Alexander-Universität Erlangen-Nürnberg; Nägelsbachstr. 25 91052 Erlangen Germany
| | - Timothy Clark
- Computer-Chemie-Centrum; Friedrich-Alexander-Universität Erlangen-Nürnberg; Nägelsbachstr. 25 91052 Erlangen Germany
| |
Collapse
|
6
|
Saleh N, Ibrahim P, Clark T. Differences between G-Protein-Stabilized Agonist-GPCR Complexes and their Nanobody-Stabilized Equivalents. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Noureldin Saleh
- Computer-Chemie-Centrum; Friedrich-Alexander-Universität Erlangen-Nürnberg; Nägelsbachstr. 25 91052 Erlangen Germany
- Present address: Institut für Medizinische Physik und Biophysik; Charité Berlin; Charitéplatz 1 10117 Berlin Germany
| | - Passainte Ibrahim
- Computer-Chemie-Centrum; Friedrich-Alexander-Universität Erlangen-Nürnberg; Nägelsbachstr. 25 91052 Erlangen Germany
| | - Timothy Clark
- Computer-Chemie-Centrum; Friedrich-Alexander-Universität Erlangen-Nürnberg; Nägelsbachstr. 25 91052 Erlangen Germany
| |
Collapse
|