1
|
Rana I, Nagaoka T, Nagasawa H, Tsuru T, Kanezashi M. The Effect of C/Si Ratio and Fluorine Doping on the Gas Permeation Properties of Pendant-Type and Bridged-Type Organosilica Membranes. MEMBRANES 2022; 12:991. [PMID: 36295750 PMCID: PMC9610907 DOI: 10.3390/membranes12100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
A series of pendant-type alkoxysilane structures with various carbon numbers (C1-C8) were used to fabricate sol-gel derived organosilica membranes to evaluate the effects of the C/Si ratio and fluorine doping. Initially, this investigation was focused on the effect that carbon-linking (pendant-type) units exert on a microporous structure and how this affects the gas-permeation properties of pendant-type organosilica membranes. Gas permeation results were compared with those of bridged-type organosilica membranes (C1-C8). Network pore size evaluation was conducted based on the selectivity of H2/N2 and the activation energy (Ep) of H2 permeation. Consequently, Ep (H2) was increased as the C/Si ratio increased from C1 to C8, which could have been due to the aggregation of pendant side chains that occupied the available micropore channel space and resulted in the reduced pore size. By comparison, these permeation results indicate that pendant-type organosilica membranes showed a somewhat loose network structure in comparison with bridged-type organosilica membranes by following the lower values of activation energies (Ep). Subsequently, we also evaluated the effect that fluorine doping (NH4F) exerts on pendant-type [methytriethoxysilane (MTES), propyltrimethoxysilane (PTMS)] and bridged-type [1,2-bis(triethoxysilyl)methane (BTESM) bis(triethoxysilyl)propane (BTESP)] organosilica structures with similar carbon numbers (C1 and C3). The gas-permeation properties of F-doped pendant network structures revealed values for pore size, H2/N2 selectivity, and Ep (H2) that were comparable to those of pristine organosilica membranes. This could be ascribed to the pendant side chains, which might have hindered the effectiveness of fluorine in pendant-type organosilica structures. The F-doped bridged-type organosilica (BTESM and BTESP) membranes, on the other hand, exhibited a looser network formation as the fluorine concentration increased.
Collapse
|
2
|
Sheng J, Ni H, Ni S, He Y, Cui R, Liao G, Bian K, Wu B, Wang X. Diversity‐Oriented Synthesis of Aliphatic Fluorides via Reductive C(sp
3
)−C(sp
3
) Cross‐Coupling Fluoroalkylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102481] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Sheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Hui‐Qi Ni
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Shan‐Xiu Ni
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Yan He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Ru Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Guang‐Xu Liao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Kang‐Jie Bian
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Bing‐Bing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Xi‐Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| |
Collapse
|
3
|
Sheng J, Ni HQ, Ni SX, He Y, Cui R, Liao GX, Bian KJ, Wu BB, Wang XS. Diversity-Oriented Synthesis of Aliphatic Fluorides via Reductive C(sp 3 )-C(sp 3 ) Cross-Coupling Fluoroalkylation. Angew Chem Int Ed Engl 2021; 60:15020-15027. [PMID: 33847433 DOI: 10.1002/anie.202102481] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Indexed: 01/14/2023]
Abstract
Monofluorinated alkyl compounds are of great importance in pharmaceuticals, agrochemicals and materials. Herein, we describe a direct nickel-catalyzed monofluoromethylation of unactivated alkyl halides using a low-cost industrial raw material, bromofluoromethane, by demonstrating a general and efficient reductive cross-coupling of two alkyl halides. Results with 1-bromo-1-fluoroalkane also demonstrate the viability of monofluoroalkylation, which further established the first example of reductive C(sp3 )-C(sp3 ) cross-coupling fluoroalkylation. These transformations demonstrate high efficiency, mild conditions, and excellent functional-group compatibility, especially for a range of pharmaceuticals and biologically active compounds. Mechanistic studies support a radical pathway. Kinetic studies reveal that the reaction is first-order dependent on catalyst and alkyl bromide whereas the generation of monofluoroalkyl radical is not involved in the rate-determining step. This strategy provides a general and efficient method for the synthesis of aliphatic fluorides.
Collapse
Affiliation(s)
- Jie Sheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Hui-Qi Ni
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Shan-Xiu Ni
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Yan He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Ru Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Guang-Xu Liao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Kang-Jie Bian
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Bing-Bing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
4
|
Zhang Y, Ren Z, Liu Y, Wang Z, Li Z. Fluoroalkylation of Allylic Alcohols with Concomitant (Hetero)aryl Migration: Access to Fluoroalkylated Ketones and Evaluation of Antifungal Action against
Magnaporthe grisea. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yanhu Zhang
- Department of Applied Chemistry College of Materials and Energy South China Agricultural University 510642 Guangzhou China
| | - Ziyang Ren
- Department of Applied Chemistry College of Materials and Energy South China Agricultural University 510642 Guangzhou China
| | - Yun‐Lin Liu
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road 510006 Guangzhou China
| | - Zhentao Wang
- College of Chemistry and Material Science Shandong Agricultural University 271018 Taian Shandong China
| | - Zhaodong Li
- Department of Applied Chemistry College of Materials and Energy South China Agricultural University 510642 Guangzhou China
| |
Collapse
|
5
|
Li L, Cao S, Lin F, Liao P, Ning Y. Oxidative Fluorocyclization of Vinyl Azides Leading to 5-Azido,5-fluoro-1,3-oxolan-2-one. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lin Li
- Northeast Normal University; Department of Chemistry; Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Renmin Street, No. 5268 130024 Changchun China
| | - Shanshan Cao
- Northeast Normal University; Department of Chemistry; Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Renmin Street, No. 5268 130024 Changchun China
| | - Fanyi Lin
- Northeast Normal University; Department of Chemistry; Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Renmin Street, No. 5268 130024 Changchun China
| | - Peiqiu Liao
- Northeast Normal University; Department of Chemistry; Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Renmin Street, No. 5268 130024 Changchun China
| | - Yongquan Ning
- Northeast Normal University; Department of Chemistry; Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Renmin Street, No. 5268 130024 Changchun China
| |
Collapse
|
6
|
An X, Xiao J. Fluorinated Alcohols: Magic Reaction Medium and Promoters for Organic Synthesis. CHEM REC 2019; 20:142-161. [DOI: 10.1002/tcr.201900020] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/07/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Xiao‐De An
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural University
| | - Jian Xiao
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural University
| |
Collapse
|
7
|
Liang S, Hammond GB, Xu B. Hydrogen Bonding: Regulator for Nucleophilic Fluorination. Chemistry 2017; 23:17850-17861. [PMID: 28833711 PMCID: PMC5740003 DOI: 10.1002/chem.201702664] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Indexed: 11/07/2022]
Abstract
The recent advances in nucleophilic fluorination, regulated through hydrogen bonding interactions are summarized. Two main categories of fluorine nucleophiles are discussed. Alkali-metal fluorides are widely used in various fluorination transformations because they are inexpensive and safe nucleophilic fluorine sources. But the non-controllable nucleophilicity and strong basicity of some of them cause undesired side reactions, which led to the introduction of hydrogen bonding to fine tune their nucleophilicity and basicity. In contrast, an HF-based fluorine nucleophile, HF/DMPU, is in some aspects superior to the conventional HF/pyridine (Olah's reagent) or HF/Et3 N because of the higher hydrogen bond basicity of DMPU. It has been used in several nucleophilic fluorinations such as fluorination of alkynes, fluoro-Prins reaction and fluorination of aziridines.
Collapse
Affiliation(s)
- Shengzong Liang
- Department of Chemistry, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Gerald B Hammond
- Department of Chemistry, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Bo Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai, 201620, P. R. China
| |
Collapse
|