1
|
Winter AJ, Rowe MT, Weir ANM, Akter N, Mbatha SZ, Walker PD, Williams C, Song Z, Race PR, Willis CL, Crump MP. Programmed Iteration Controls the Assembly of the Nonanoic Acid Side Chain of the Antibiotic Mupirocin. Angew Chem Int Ed Engl 2022; 61:e202212393. [PMID: 36227272 PMCID: PMC10098928 DOI: 10.1002/anie.202212393] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/12/2022]
Abstract
Mupirocin is a clinically important antibiotic produced by Pseudomonas fluorescens NCIMB 10586 that is assembled by a complex trans-AT polyketide synthase. The polyketide fragment, monic acid, is esterified by a 9-hydroxynonanoic acid (9HN) side chain which is essential for biological activity. The ester side chain assembly is initialised from a 3-hydroxypropionate (3HP) starter unit attached to the acyl carrier protein (ACP) MacpD, but the fate of this species is unknown. Herein we report the application of NMR spectroscopy, mass spectrometry, chemical probes and in vitro assays to establish the remaining steps of 9HN biosynthesis. These investigations reveal a complex interplay between a novel iterative or "stuttering" KS-AT didomain (MmpF), the multidomain module MmpB and multiple ACPs. This work has important implications for understanding the late-stage biosynthetic steps of mupirocin and will be important for future engineering of related trans-AT biosynthetic pathways (e.g. thiomarinol).
Collapse
Affiliation(s)
- Ashley J Winter
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Matthew T Rowe
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Angus N M Weir
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Nahida Akter
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | | | - Paul D Walker
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | | | - Zhongshu Song
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Paul R Race
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | | | - Matthew P Crump
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| |
Collapse
|
2
|
Winter AJ, Rowe MT, Weir ANM, Akter N, Mbatha SZ, Walker PD, Williams C, Song Z, Race PR, Willis CL, Crump MP. Programmed Iteration Controls the Assembly of the Nonanoic Acid Side Chain of the Antibiotic Mupirocin. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202212393. [PMID: 38505625 PMCID: PMC10947060 DOI: 10.1002/ange.202212393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/11/2022]
Abstract
Mupirocin is a clinically important antibiotic produced by Pseudomonas fluorescens NCIMB 10586 that is assembled by a complex trans-AT polyketide synthase. The polyketide fragment, monic acid, is esterified by a 9-hydroxynonanoic acid (9HN) side chain which is essential for biological activity. The ester side chain assembly is initialised from a 3-hydroxypropionate (3HP) starter unit attached to the acyl carrier protein (ACP) MacpD, but the fate of this species is unknown. Herein we report the application of NMR spectroscopy, mass spectrometry, chemical probes and in vitro assays to establish the remaining steps of 9HN biosynthesis. These investigations reveal a complex interplay between a novel iterative or "stuttering" KS-AT didomain (MmpF), the multidomain module MmpB and multiple ACPs. This work has important implications for understanding the late-stage biosynthetic steps of mupirocin and will be important for future engineering of related trans-AT biosynthetic pathways (e.g. thiomarinol).
Collapse
Affiliation(s)
| | | | | | - Nahida Akter
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| | | | - Paul D. Walker
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| | | | - Zhongshu Song
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| | - Paul R. Race
- School of BiochemistryUniversity of BristolBristolBS8 1TDUK
| | | | | |
Collapse
|
3
|
Mohammad HH, Connolly JA, Song Z, Hothersall J, Race PR, Willis CL, Simpson TJ, Winn PJ, Thomas CM. Fine Tuning of Antibiotic Activity by a Tailoring Hydroxylase in a Trans-AT Polyketide Synthase Pathway. Chembiochem 2018; 19:836-841. [PMID: 29363252 DOI: 10.1002/cbic.201800036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Indexed: 11/06/2022]
Abstract
The addition or removal of hydroxy groups modulates the activity of many pharmacologically active biomolecules. It can be integral to the basic biosynthetic factory or result from associated tailoring steps. For the anti-MRSA antibiotic mupirocin, removal of a C8-hydroxy group late in the biosynthetic pathway gives the active pseudomonic acid A. An extra hydroxylation, at C4, occurs in the related but more potent antibiotic thiomarinol A. We report here in vivo and in vitro studies that show that the putative non-haem-iron(II)/α-ketoglutaratedependent dioxygenase TmuB, from the thiomarinol cluster, 4-hydroxylates various pseudomonic acids whereas C8-OH, and other substituents around the tetrahydropyran ring, block enzyme action but not substrate binding. Molecular modelling suggested a basis for selectivity, but mutation studies had a limited ability to rationally modify TmuB substrate specificity. 4-Hydroxylation had opposite effects on the potency of mupirocin and thiomarinol. Thus, TmuB can be added to the toolbox of polyketide tailoring technologies for the in vivo generation of new antibiotics in the future.
Collapse
Affiliation(s)
- Hadi H Mohammad
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,College of Medicine, Kirkuk University, Kirkuk, Iraq
| | - Jack A Connolly
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zhongshu Song
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Joanne Hothersall
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Paul R Race
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Christine L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Thomas J Simpson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Peter J Winn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|