1
|
Wang N, Xiao X, Liu CX, Yao H, Huang N, Zou K. Recent Advances in the Total Synthesis of <i>Aspidosperma</i> and <i>Kopsia</i> Alkaloids Using Tetracyclic Pyridocarbazoles as Versatile Building Blocks. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Xiao Xiao
- Zhejiang University of Technology CHINA
| | | | - Hui Yao
- China Three Gorges University CHINA
| | | | - Kun Zou
- China Three Gorges University CHINA
| |
Collapse
|
2
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
3
|
Qin B, Lu Z, Jia Y. Divergent Total Synthesis of Four Kopsane Alkaloids: N-Carbomethoxy-10,22-dioxokopsane, Epikopsanol-10-lactam, 10,22-Dioxokopsane, and N-Methylkopsanone. Angew Chem Int Ed Engl 2022; 61:e202201712. [PMID: 35191139 DOI: 10.1002/anie.202201712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Indexed: 01/07/2023]
Abstract
We have achieved the divergent total synthesis of four kopsane alkaloids which share a complex heptacyclic caged ring system. Key transformations include an asymmetric Diels-Alder reaction to assemble the central bicyclo[2.2.2]octane moiety and the quaternary stereocenter at C20, a SmI2 -mediated cascade reduction/aldol reaction to construct the five-membered ring and the quaternary stereocenter at C7, and a late-stage cascade reductive amination/cyclization to establish the highly strained caged ring system.
Collapse
Affiliation(s)
- Bo Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing, 100191, P. R. China
| | - Zhepei Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing, 100191, P. R. China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing, 100191, P. R. China
| |
Collapse
|
4
|
Qin B, Lu Z, Jia Y. Divergent Total Synthesis of Four Kopsane Alkaloids:
N
‐Carbomethoxy‐10,22‐dioxokopsane, Epikopsanol‐10‐lactam, 10,22‐Dioxokopsane, and
N
‐Methylkopsanone. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bo Qin
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences and Chemical Biology Center Peking University 38 Xueyuan Road Beijing 100191 P. R. China
| | - Zhepei Lu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences and Chemical Biology Center Peking University 38 Xueyuan Road Beijing 100191 P. R. China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences and Chemical Biology Center Peking University 38 Xueyuan Road Beijing 100191 P. R. China
| |
Collapse
|
5
|
Mu X, Li Y, Zheng N, Long J, Chen S, Liu B, Zhao C, Yang Z. Stereoselective Synthesis of Cyclohepta[
b
]indoles by Visible‐Light‐Induced [2+2]‐Cycloaddition/retro‐Mannich‐type Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xin‐Peng Mu
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Yuan‐He Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS) Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 P. R. China
| | - Nan Zheng
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Jian‐Yu Long
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Si‐Jia Chen
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Bing‐Yan Liu
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Chun‐Bo Zhao
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS) Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 P. R. China
- Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
| |
Collapse
|
6
|
Mu XP, Li YH, Zheng N, Long JY, Chen SJ, Liu BY, Zhao CB, Yang Z. Stereoselective Synthesis of Cyclohepta[b]indoles by Visible-Light-Induced [2+2]-Cycloaddition/retro-Mannich-type Reactions. Angew Chem Int Ed Engl 2021; 60:11211-11216. [PMID: 33683807 DOI: 10.1002/anie.202101104] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/27/2021] [Indexed: 12/12/2022]
Abstract
A novel method for the concise synthesis of cyclohepta[b]indoles in high yields was developed. The method involves a visible-light-induced, photocatalyzed [2+2]-cycloaddition/ retro-Mannich-type reaction of enaminones. Experimental and computational studies suggested that the reaction is a photoredox process initiated by single-electron oxidation of an enaminone moiety, which undergoes subsequent cyclobutane formation and rapidly fragmentation in a radical-cation state to form cyclohepta[b]indoles.
Collapse
Affiliation(s)
- Xin-Peng Mu
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yuan-He Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| | - Nan Zheng
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Jian-Yu Long
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Si-Jia Chen
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Bing-Yan Liu
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Chun-Bo Zhao
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.,Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China.,Shenzhen Bay Laboratory, Shenzhen, 518055, P. R. China
| |
Collapse
|
7
|
Mohammadkhani L, Heravi MM. Applications of Transition-Metal-Catalyzed Asymmetric Allylic Substitution in Total Synthesis of Natural Products: An Update. CHEM REC 2020; 21:29-68. [PMID: 33206466 DOI: 10.1002/tcr.202000086] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 01/14/2023]
Abstract
Metal-catalyzed asymmetric allylic substitution (AAS) reaction is one of the most synthetically useful reactions catalyzed by metal complexes for the formation of carbon-carbon and carbon-heteroatom bonds. It comprises the substitution of allylic substrates with a wide range of nucleophiles or SN 2'-type allylic substitution, which results in the formation of the above-mentioned bonds with high levels of enantioselective induction. AAS reaction tolerates a broad range of functional groups, thus has been successfully applied in the asymmetric synthesis of a wide range of optically pure compounds. This reaction has been extensively used in the total synthesis of several complex molecules, especially natural products. In this review, we try to highlight the applications of metal (Pd, Ir, Mo, or Cu)-catalyzed AAS reaction in the total synthesis of the biologically active natural products, as a key step, updating the subject from 2003 till date.
Collapse
Affiliation(s)
- Leyla Mohammadkhani
- Department of Chemistry, School of Sciences, Alzahra University Vanak, Tehran, Iran
| | - Majid M Heravi
- Department of Chemistry, School of Sciences, Alzahra University Vanak, Tehran, Iran
| |
Collapse
|
8
|
Affiliation(s)
- Karre Nagaraju
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Dongshun Ni
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
9
|
Nagaraju K, Ni D, Ma D. Total Synthesis of Kopsinitarine E. Angew Chem Int Ed Engl 2020; 59:22039-22042. [DOI: 10.1002/anie.202011093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Karre Nagaraju
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Dongshun Ni
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
10
|
Wang S, Si R, Zhuang Q, Guo X, Ke T, Zhang X, Zhang F, Tu Y. Collective Total Synthesis of Aspidofractinine Alkaloids through the Development of a Bischler–Napieralski/Semipinacol Rearrangement Reaction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shuang‐Hu Wang
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry Lanzhou University Lanzhou 730000 P. R. China
| | - Rui‐Qi Si
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry Lanzhou University Lanzhou 730000 P. R. China
| | - Qing‐Bo Zhuang
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry Lanzhou University Lanzhou 730000 P. R. China
| | - Xiang Guo
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry Lanzhou University Lanzhou 730000 P. R. China
| | - Tian Ke
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xiao‐Ming Zhang
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry Lanzhou University Lanzhou 730000 P. R. China
| | - Fu‐Min Zhang
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry Lanzhou University Lanzhou 730000 P. R. China
| | - Yong‐Qiang Tu
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry Lanzhou University Lanzhou 730000 P. R. China
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
11
|
Wang S, Si R, Zhuang Q, Guo X, Ke T, Zhang X, Zhang F, Tu Y. Collective Total Synthesis of Aspidofractinine Alkaloids through the Development of a Bischler–Napieralski/Semipinacol Rearrangement Reaction. Angew Chem Int Ed Engl 2020; 59:21954-21958. [DOI: 10.1002/anie.202009238] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Shuang‐Hu Wang
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry Lanzhou University Lanzhou 730000 P. R. China
| | - Rui‐Qi Si
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry Lanzhou University Lanzhou 730000 P. R. China
| | - Qing‐Bo Zhuang
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry Lanzhou University Lanzhou 730000 P. R. China
| | - Xiang Guo
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry Lanzhou University Lanzhou 730000 P. R. China
| | - Tian Ke
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xiao‐Ming Zhang
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry Lanzhou University Lanzhou 730000 P. R. China
| | - Fu‐Min Zhang
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry Lanzhou University Lanzhou 730000 P. R. China
| | - Yong‐Qiang Tu
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry Lanzhou University Lanzhou 730000 P. R. China
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
12
|
Jia X, Lei H, Han F, Zhang T, Chen Y, Xu Z, Nakliang P, Choi S, Guo Y, Ye T. Asymmetric Total Syntheses of Kopsane Alkaloids via a PtCl 2 -Catalyzed Intramolecular [3+2] Cycloaddition. Angew Chem Int Ed Engl 2020; 59:12832-12836. [PMID: 32329945 DOI: 10.1002/anie.202005048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 12/19/2022]
Abstract
A concise and asymmetric total synthesis of five kopsane alkaloids that share a unique heptacyclic caged ring system was accomplished. The key transformation in the sequence involved a remarkable PtCl2 -catalyzed intramolecular [3+2] cycloaddition, which allowed for the rapid assembly of pentacyclic carbon skeletons bearing 2,3-quaternary functionalized indoline. Expeditious construction of diverse indoline scaffolds with excellent control of diastereoselectivity demonstrated the broad scope and versatility of this key transformation.
Collapse
Affiliation(s)
- Xuelei Jia
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Tsinghua Shenzhen International Graduate School, Xili, Nanshan District, Shenzhen, 518055, China
| | - Honghui Lei
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Tsinghua Shenzhen International Graduate School, Xili, Nanshan District, Shenzhen, 518055, China
| | - Feipeng Han
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Tsinghua Shenzhen International Graduate School, Xili, Nanshan District, Shenzhen, 518055, China
| | - Tao Zhang
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Tsinghua Shenzhen International Graduate School, Xili, Nanshan District, Shenzhen, 518055, China
| | - Ying Chen
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Tsinghua Shenzhen International Graduate School, Xili, Nanshan District, Shenzhen, 518055, China
| | - Zhengshuang Xu
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Tsinghua Shenzhen International Graduate School, Xili, Nanshan District, Shenzhen, 518055, China
| | - Pratanphorn Nakliang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Sun Choi
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Yian Guo
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Tsinghua Shenzhen International Graduate School, Xili, Nanshan District, Shenzhen, 518055, China
| | - Tao Ye
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Tsinghua Shenzhen International Graduate School, Xili, Nanshan District, Shenzhen, 518055, China
| |
Collapse
|
13
|
Jia X, Lei H, Han F, Zhang T, Chen Y, Xu Z, Nakliang P, Choi S, Guo Y, Ye T. Asymmetric Total Syntheses of Kopsane Alkaloids via a PtCl
2
‐Catalyzed Intramolecular [3+2] Cycloaddition. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xuelei Jia
- State Key Laboratory of Chemical Oncogenomics Peking University Shenzhen Graduate School Tsinghua Shenzhen International Graduate School Xili, Nanshan District Shenzhen 518055 China
| | - Honghui Lei
- State Key Laboratory of Chemical Oncogenomics Peking University Shenzhen Graduate School Tsinghua Shenzhen International Graduate School Xili, Nanshan District Shenzhen 518055 China
| | - Feipeng Han
- State Key Laboratory of Chemical Oncogenomics Peking University Shenzhen Graduate School Tsinghua Shenzhen International Graduate School Xili, Nanshan District Shenzhen 518055 China
| | - Tao Zhang
- State Key Laboratory of Chemical Oncogenomics Peking University Shenzhen Graduate School Tsinghua Shenzhen International Graduate School Xili, Nanshan District Shenzhen 518055 China
| | - Ying Chen
- State Key Laboratory of Chemical Oncogenomics Peking University Shenzhen Graduate School Tsinghua Shenzhen International Graduate School Xili, Nanshan District Shenzhen 518055 China
| | - Zhengshuang Xu
- State Key Laboratory of Chemical Oncogenomics Peking University Shenzhen Graduate School Tsinghua Shenzhen International Graduate School Xili, Nanshan District Shenzhen 518055 China
| | - Pratanphorn Nakliang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul 03760 Korea
| | - Sun Choi
- College of Pharmacy and Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul 03760 Korea
| | - Yian Guo
- State Key Laboratory of Chemical Oncogenomics Peking University Shenzhen Graduate School Tsinghua Shenzhen International Graduate School Xili, Nanshan District Shenzhen 518055 China
| | - Tao Ye
- State Key Laboratory of Chemical Oncogenomics Peking University Shenzhen Graduate School Tsinghua Shenzhen International Graduate School Xili, Nanshan District Shenzhen 518055 China
| |
Collapse
|
14
|
Schlatzer T, Schröder H, Trobe M, Lembacher‐Fadum C, Stangl S, Schlögl C, Weber H, Breinbauer R. Pd/BIPHEPHOS is an Efficient Catalyst for the Pd-Catalyzed S-Allylation of Thiols with High n-Selectivity. Adv Synth Catal 2020; 362:331-336. [PMID: 32063821 PMCID: PMC7004212 DOI: 10.1002/adsc.201901250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/22/2019] [Indexed: 11/06/2022]
Abstract
The Pd-catalyzed S-allylation of thiols with stable allylcarbonate and allylacetate reagents offers several advantages over established reactions for the formation of thioethers. We could demonstrate that Pd/BIPHEPHOS is a catalyst system which allows the transition metal-catalyzed S-allylation of thiols with excellent n-regioselectivity. Mechanistic studies showed that this reaction is reversible under the applied reaction conditions. The excellent functional group tolerance of this transformation was demonstrated with a broad variety of thiol nucleophiles (18 examples) and allyl substrates (9 examples), and could even be applied for the late-stage diversification of cephalosporins, which might find application in the synthesis of new antibiotics.
Collapse
Affiliation(s)
- Thomas Schlatzer
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 9A-8010GrazAustria
| | - Hilmar Schröder
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 9A-8010GrazAustria
| | - Melanie Trobe
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 9A-8010GrazAustria
| | | | - Simon Stangl
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 9A-8010GrazAustria
| | - Christoph Schlögl
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 9A-8010GrazAustria
| | - Hansjörg Weber
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 9A-8010GrazAustria
| | - Rolf Breinbauer
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 9A-8010GrazAustria
| |
Collapse
|
15
|
Li W, Chen Z, Yu D, Peng X, Wen G, Wang S, Xue F, Liu X, Qin Y. Asymmetric Total Syntheses of the Akuammiline Alkaloids (−)‐Strictamine and (−)‐Rhazinoline. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wenfei Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Zhitao Chen
- School of Pharmaceutic ScienceChongqing University Chongqing 401331 P. R. China
| | - Di Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Xin Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Guohua Wen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Siqi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Fei Xue
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Xiao‐Yu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| |
Collapse
|
16
|
Li W, Chen Z, Yu D, Peng X, Wen G, Wang S, Xue F, Liu X, Qin Y. Asymmetric Total Syntheses of the Akuammiline Alkaloids (−)‐Strictamine and (−)‐Rhazinoline. Angew Chem Int Ed Engl 2019; 58:6059-6063. [DOI: 10.1002/anie.201901074] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Wenfei Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Zhitao Chen
- School of Pharmaceutic ScienceChongqing University Chongqing 401331 P. R. China
| | - Di Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Xin Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Guohua Wen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Siqi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Fei Xue
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Xiao‐Yu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| |
Collapse
|
17
|
Tong X, Shi B, Liang K, Liu Q, Xia C. Enantioselective Total Synthesis of (+)‐Flavisiamine F via Late‐Stage Visible‐Light‐Induced Photochemical Cyclization. Angew Chem Int Ed Engl 2019; 58:5443-5446. [PMID: 30884052 DOI: 10.1002/anie.201901241] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/18/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Xiaogang Tong
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of Botany, CAS Kunming 650201 Yunnan China
| | - Bingfei Shi
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
| | - Kangjiang Liang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
| | - Qian Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of Botany, CAS Kunming 650201 Yunnan China
| |
Collapse
|
18
|
Tong X, Shi B, Liang K, Liu Q, Xia C. Enantioselective Total Synthesis of (+)‐Flavisiamine F via Late‐Stage Visible‐Light‐Induced Photochemical Cyclization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaogang Tong
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of Botany, CAS Kunming 650201 Yunnan China
| | - Bingfei Shi
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
| | - Kangjiang Liang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
| | - Qian Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of Botany, CAS Kunming 650201 Yunnan China
| |
Collapse
|
19
|
Rao X, Li N, Bai H, Dai C, Wang Z, Tang W. Efficient Synthesis of (−)-Corynoline by Enantioselective Palladium-Catalyzed α-Arylation with Sterically Hindered Substrates. Angew Chem Int Ed Engl 2018; 57:12328-12332. [DOI: 10.1002/anie.201807302] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/30/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Xiaofeng Rao
- State Key Laboratory of Bio-Organic and Natural Products Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Ling Ling Rd Shanghai 200032 China
| | - Naikai Li
- State Key Laboratory of Bio-Organic and Natural Products Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Ling Ling Rd Shanghai 200032 China
| | - Heng Bai
- State Key Laboratory of Bio-Organic and Natural Products Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Ling Ling Rd Shanghai 200032 China
| | - Chaodi Dai
- State Key Laboratory of Bio-Organic and Natural Products Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Ling Ling Rd Shanghai 200032 China
| | - Zheng Wang
- Informatics and Technology; Astra Zeneca China; Shanghai China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Ling Ling Rd Shanghai 200032 China
| |
Collapse
|
20
|
Rao X, Li N, Bai H, Dai C, Wang Z, Tang W. Efficient Synthesis of (−)-Corynoline by Enantioselective Palladium-Catalyzed α-Arylation with Sterically Hindered Substrates. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaofeng Rao
- State Key Laboratory of Bio-Organic and Natural Products Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Ling Ling Rd Shanghai 200032 China
| | - Naikai Li
- State Key Laboratory of Bio-Organic and Natural Products Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Ling Ling Rd Shanghai 200032 China
| | - Heng Bai
- State Key Laboratory of Bio-Organic and Natural Products Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Ling Ling Rd Shanghai 200032 China
| | - Chaodi Dai
- State Key Laboratory of Bio-Organic and Natural Products Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Ling Ling Rd Shanghai 200032 China
| | - Zheng Wang
- Informatics and Technology; Astra Zeneca China; Shanghai China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Ling Ling Rd Shanghai 200032 China
| |
Collapse
|
21
|
Wang X, Li J, Yuan T, You B, Xie G, Lv X. Additive Tuned Selective Synthesis of Bicyclo[3.3.0]octan-1-ols and Bicyclo[3.1.0]hexan-1-ols Mediated by AllylSmBr. J Org Chem 2018; 83:8984-8994. [PMID: 29944369 DOI: 10.1021/acs.joc.8b01170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The selective construction of bicyclo[3.3.0]octan-1-ols and bicyclo[3.1.0]hexan-1-ols was achieved by using an allylSmBr/additive(s) system. By employing HMPA as the only additive, the momoallylation/ketone-alkene coupling occurred preferably and afforded bicyclo[3.3.0]octan-1-ols in good yields with high diastereoselectivities. While the ester-alkene coupling predominated to generate bicyclo[3.1.0]hexan-1-ols in moderate yields with excellent diastereoselectivities in the presence of a proton source, such as pyrrole as the coadditive with HMPA. The tunable reactivity of allylSmBr by additive(s) would make it a versatile reagent in organic synthesis.
Collapse
Affiliation(s)
- Xiaoxia Wang
- School of Environment and Civil Engineering , Dongguan University of Technology , Dongguan , 523808 , People's Republic of China.,College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua 321004 , People's Republic of China
| | - Jianyong Li
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua 321004 , People's Republic of China
| | - Ting Yuan
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua 321004 , People's Republic of China
| | - Bingxin You
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua 321004 , People's Republic of China
| | - Guanqun Xie
- School of Environment and Civil Engineering , Dongguan University of Technology , Dongguan , 523808 , People's Republic of China.,College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua 321004 , People's Republic of China
| | - Xin Lv
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua 321004 , People's Republic of China
| |
Collapse
|
22
|
Ni D, Wei Y, Ma D. Thiourea-Catalyzed Asymmetric Michael Addition of Carbazolones to 2-Chloroacrylonitrile: Total Synthesis of 5,22-Dioxokopsane, Kopsinidine C, and Demethoxycarbonylkopsin. Angew Chem Int Ed Engl 2018; 57:10207-10211. [DOI: 10.1002/anie.201805905] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Dongshun Ni
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| | - Yi Wei
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| | - Dawei Ma
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| |
Collapse
|
23
|
Ni D, Wei Y, Ma D. Thiourea-Catalyzed Asymmetric Michael Addition of Carbazolones to 2-Chloroacrylonitrile: Total Synthesis of 5,22-Dioxokopsane, Kopsinidine C, and Demethoxycarbonylkopsin. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805905] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dongshun Ni
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| | - Yi Wei
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| | - Dawei Ma
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| |
Collapse
|
24
|
Lin M, Zhu L, Xia J, Yu Y, Chen J, Mao Z, Huang X. Gold-Catalyzed Oxidative Cyclization of Tryptamine Derived Enynamides: A Stereoselective Approach to Tetracyclic Spiroindolines. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Meijun Lin
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology; Center for Excellence in Molecular Synthesis; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou Fujian 350002 People's Republic of China
- College of Chemistry and Chemical Engineering; Fujian Normal University; Fuzhou Fujian 350007 People's Republic of China
| | - Lei Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology; Center for Excellence in Molecular Synthesis; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou Fujian 350002 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Jiajin Xia
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology; Center for Excellence in Molecular Synthesis; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou Fujian 350002 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Yinghua Yu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology; Center for Excellence in Molecular Synthesis; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou Fujian 350002 People's Republic of China
| | - Jianxin Chen
- College of Chemistry and Chemical Engineering; Fujian Normal University; Fuzhou Fujian 350007 People's Republic of China
| | - Zhifeng Mao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology; Center for Excellence in Molecular Synthesis; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou Fujian 350002 People's Republic of China
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology; Center for Excellence in Molecular Synthesis; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou Fujian 350002 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| |
Collapse
|
25
|
Pritchett BP, Donckele EJ, Stoltz BM. Enantioselective Catalysis Coupled with Stereodivergent Cyclization Strategies Enables Rapid Syntheses of (+)-Limaspermidine and (+)-Kopsihainanine A. Angew Chem Int Ed Engl 2017; 56:12624-12627. [PMID: 28872739 DOI: 10.1002/anie.201707304] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Indexed: 01/09/2023]
Abstract
Enantioselective Pd-catalyzed allylic alkylations of dihydropyrido[1,2-a]indolone (DHPI) substrates were used to construct the C20-quaternary stereocenters of multiple monoterpene indole alkaloids. Stereodivergent Pictet-Spengler and Bischler-Napieralski cyclization/reduction cascades furnish the cis- and trans-fused azadecalin subunits present in Aspidosperma and Kopsia alkaloids, respectively, en route to highly efficient syntheses of (+)-limaspermidine and (+)-kopsihainanine A.
Collapse
Affiliation(s)
- Beau P Pritchett
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd. MC 101-20, Pasadena, CA, 91125, USA
| | - Etienne J Donckele
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd. MC 101-20, Pasadena, CA, 91125, USA
| | - Brian M Stoltz
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd. MC 101-20, Pasadena, CA, 91125, USA
| |
Collapse
|
26
|
Pritchett BP, Donckele EJ, Stoltz BM. Enantioselective Catalysis Coupled with Stereodivergent Cyclization Strategies Enables Rapid Syntheses of (+)‐Limaspermidine and (+)‐Kopsihainanine A. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707304] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Beau P. Pritchett
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E. California Blvd. MC 101-20 Pasadena CA 91125 USA
| | - Etienne J. Donckele
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E. California Blvd. MC 101-20 Pasadena CA 91125 USA
| | - Brian M. Stoltz
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E. California Blvd. MC 101-20 Pasadena CA 91125 USA
| |
Collapse
|