1
|
Zscherp R, Coetzee J, Vornweg J, Grunenberg J, Herrmann J, Müller R, Klahn P. Biomimetic enterobactin analogue mediates iron-uptake and cargo transport into E. coli and P. aeruginosa. Chem Sci 2021; 12:10179-10190. [PMID: 34377407 PMCID: PMC8336463 DOI: 10.1039/d1sc02084f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
The design, synthesis and biological evaluation of the artificial enterobactin analogue EntKL and several fluorophore-conjugates thereof are described. EntKL provides an attachment point for cargos such as fluorophores or antimicrobial payloads. Corresponding conjugates are recognized by outer membrane siderophore receptors of Gram-negative pathogens and retain the natural hydrolyzability of the tris-lactone backbone. Initial density-functional theory (DFT) calculations of the free energies of solvation (ΔG(sol)) and relaxed Fe-O force constants of the corresponding [Fe-EntKL]3- complexes indicated a similar iron binding constant compared to natural enterobactin (Ent). The synthesis of EntKL was achieved via an iterative assembly based on a 3-hydroxylysine building block over 14 steps with an overall yield of 3%. A series of growth recovery assays under iron-limiting conditions with Escherichia coli and Pseudomonas aeruginosa mutant strains that are defective in natural siderophore synthesis revealed a potent concentration-dependent growth promoting effect of EntKL similar to natural Ent. Additionally, four cargo-conjugates differing in molecular size were able to restore growth of E. coli indicating an uptake into the cytosol. P. aeruginosa displayed a stronger uptake promiscuity as six different cargo-conjugates were found to restore growth under iron-limiting conditions. Imaging studies utilizing BODIPYFL-conjugates, demonstrated the ability of EntKL to overcome the Gram-negative outer membrane permeability barrier and thus deliver molecular cargos via the bacterial iron transport machinery of E. coli and P. aeruginosa.
Collapse
Affiliation(s)
- Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Janetta Coetzee
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Johannes Vornweg
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Jörg Grunenberg
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Jennifer Herrmann
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Rolf Müller
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| |
Collapse
|
2
|
Dance I. Computational Investigations of the Chemical Mechanism of the Enzyme Nitrogenase. Chembiochem 2020; 21:1671-1709. [DOI: 10.1002/cbic.201900636] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Ian Dance
- School of Chemistry UNSW Sydney Sydney 2052 Australia
| |
Collapse
|
3
|
Lücht A, Kreft A, Grunenberg J, Jones PG, Werz DB. Kinetische Studie zu Donor-Akzeptor-Cyclopropanen: Strukturelle und elektronische Einflüsse auf die Reaktivität. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812880] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Alexander Lücht
- Technische Universität Braunschweig; Institut für Organische Chemie; Hagenring 30 38106 Braunschweig Deutschland
| | - Alexander Kreft
- Technische Universität Braunschweig; Institut für Organische Chemie; Hagenring 30 38106 Braunschweig Deutschland
| | - Jörg Grunenberg
- Technische Universität Braunschweig; Institut für Organische Chemie; Hagenring 30 38106 Braunschweig Deutschland
| | - Peter G. Jones
- Technische Universität Braunschweig; Institut für Anorganische und Analytische Chemie; Hagenring 30 38106 Braunschweig Deutschland
| | - Daniel B. Werz
- Technische Universität Braunschweig; Institut für Organische Chemie; Hagenring 30 38106 Braunschweig Deutschland
| |
Collapse
|
4
|
Kreft A, Lücht A, Grunenberg J, Jones PG, Werz DB. Kinetic Studies of Donor-Acceptor Cyclopropanes: The Influence of Structural and Electronic Properties on the Reactivity. Angew Chem Int Ed Engl 2019; 58:1955-1959. [DOI: 10.1002/anie.201812880] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/27/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Alexander Kreft
- Technische Universität Braunschweig; Institut für Organische Chemie; Hagenring 30 38106 Braunschweig Germany
| | - Alexander Lücht
- Technische Universität Braunschweig; Institut für Organische Chemie; Hagenring 30 38106 Braunschweig Germany
| | - Jörg Grunenberg
- Technische Universität Braunschweig; Institut für Organische Chemie; Hagenring 30 38106 Braunschweig Germany
| | - Peter G. Jones
- Technische Universität Braunschweig; Institut für Anorganische und Analytische Chemie; Hagenring 30 38106 Braunschweig Germany
| | - Daniel B. Werz
- Technische Universität Braunschweig; Institut für Organische Chemie; Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
5
|
Kaczmarek MA, Malhotra A, Balan GA, Timmins A, de Visser SP. Nitrogen Reduction to Ammonia on a Biomimetic Mononuclear Iron Centre: Insights into the Nitrogenase Enzyme. Chemistry 2017; 24:5293-5302. [PMID: 29165842 PMCID: PMC5915742 DOI: 10.1002/chem.201704688] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Indexed: 11/05/2022]
Abstract
Nitrogenases catalyse nitrogen fixation to ammonia on a multinuclear Fe‐Mo centre, but their mechanism and particularly the order of proton and electron transfer processes that happen during the catalytic cycle is still unresolved. Recently, a unique biomimetic mononuclear iron model was developed using tris(phosphine)borate (TPB) ligands that was shown to convert N2 into NH3. Herein, we present a computational study on the [(TPB)FeN2]− complex and describe its conversion into ammonia through the addition of electrons and protons. In particular, we tested the consecutive proton transfer on only the distal nitrogen atom or alternated protonation of the distal/proximal nitrogen. It is found that the lowest energy pathway is consecutive addition of three protons to the same site, which forms ammonia and an iron‐nitrido complex. In addition, the proton transfer step of complexes with the metal in various oxidation and spin states were tested and show that the pKa values of biomimetic mononuclear nitrogenase intermediates vary little with iron oxidation states. As such, the model gives several possible NH3 formation pathways depending on the order of electron/proton transfer, and all should be physically accessible in the natural system. These results may have implications for enzymatic nitrogenases and give insight into the catalytic properties of mononuclear iron centres.
Collapse
Affiliation(s)
- Monika A Kaczmarek
- Manchester Institute of Biotechnology and School of Chemical, Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093, Warsaw, Poland
| | - Abheek Malhotra
- Manchester Institute of Biotechnology and School of Chemical, Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - G Alex Balan
- Manchester Institute of Biotechnology and School of Chemical, Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Amy Timmins
- Manchester Institute of Biotechnology and School of Chemical, Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical, Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|