1
|
Okumatsu D, Kawanaka K, Kainuma S, Kiyokawa K, Minakata S. α-Amination of Carbonyl Compounds by Using Hypervalent Iodine-Based Aminating Reagents Containing a Transferable (Diarylmethylene)amino Group. Chemistry 2023; 29:e202203722. [PMID: 36604401 DOI: 10.1002/chem.202203722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
Hypervalent iodine-based aminating reagents containing a transferable (diarylmethylene)amino group can be used for the α-amination of simple carbonyl compounds such as esters, amides, and ketones in the presence of a lithium base. The (diarylmethylene)amino groups of the products can be readily modified, thus providing access to primary amines and diarylmethylamines. The developed method features transition-metal-free conditions and a simple one-pot procedure without the need to prepare enolate equivalents separately, thus offering a general and practical approach to the synthesis of a wide variety of α-amino carbonyl compounds. Experimental mechanistic investigations indicate that this amination proceeds through a unique radical coupling of an α-carbonyl radical with an iminyl radical; they are generated through a single-electron transfer between a lithium enolate and the hypervalent iodine reagent.
Collapse
Affiliation(s)
- Daichi Okumatsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Kazuki Kawanaka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Shunpei Kainuma
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Kensuke Kiyokawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Satoshi Minakata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Cao J, Su YX, Zhang XY, Zhu SF. Highly Enantioselective Brønsted Acid Catalyzed Heyns Rearrangement. Angew Chem Int Ed Engl 2023; 62:e202212976. [PMID: 36316277 DOI: 10.1002/anie.202212976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 12/05/2022]
Abstract
Herein we report the first method for highly enantioselective Brønsted acid catalyzed Heyns rearrangements. These reactions, catalyzed by a chiral spiro phosphoric acid, afforded synthetically valuable chiral α-aryl-α-aminoketones which cannot be obtained by means of previously reported Heyns rearrangement methods. This method features low catalyst loadings, high yields and high enantioselectivities, making these reactions highly practical. We used the method to efficiently synthesize various chiral amines, including some biologically active molecules. We experimentally proved that these acid-catalyzed Heyns rearrangements proceeded via a proton-transfer process involving an enol intermediate and the stereocontrol was realized during the proton-transfer step.
Collapse
Affiliation(s)
- Jin Cao
- Frontiers Science Center for New Organic Matters, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Yu-Xuan Su
- Frontiers Science Center for New Organic Matters, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Xin-Yu Zhang
- Frontiers Science Center for New Organic Matters, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Shou-Fei Zhu
- Frontiers Science Center for New Organic Matters, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China.,Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
| |
Collapse
|
3
|
Wang C, Pang Y, Wu Y, Zhang N, Yang R, Li Y, Chen P, Jiang H, Xu X, Kam T, Fan T, Ma Z. Divergent Synthesis of Skeletally Distinct Arboridinine and Arborisidine. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Cheng Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Yubing Pang
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Yuecheng Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Nanping Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Rui Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Ying Li
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 P. R. China
| | - Pengquan Chen
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Xue‐Tao Xu
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 P. R. China
| | - Toh‐Seok Kam
- Department of Chemistry Faculty of Science University of Malaya 50603 Kuala Lumpur Malaysia
| | - Ting Fan
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| |
Collapse
|
4
|
Wang C, Pang Y, Wu Y, Zhang N, Yang R, Li Y, Chen P, Jiang H, Xu XT, Kam TS, Fan T, Ma Z. Divergent Synthesis of Skeletally Distinct Arboridinine and Arborisidine. Angew Chem Int Ed Engl 2021; 60:26978-26985. [PMID: 34665909 DOI: 10.1002/anie.202110149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 01/10/2023]
Abstract
A divergent synthesis of skeletally distinct arboridinine and arborisidine was achieved. The central divergent strategy was inspired by the divergent biosynthetic cyclization mode of arboridinine and arborisidine and their hidden topological connection. The branch point was reached through a Michael and Mannich cascade process. A site-selective intramolecular Mannich reaction was developed to construct the tetracyclic core of arboridinine, while a site-selective intramolecular α-amination of ketone was used to access the tetracyclic core of arborisidine. A strategic Peterson olefination through intramolecular nucleophile delivery was able to set up the exocyclic olefin of arboridinine.
Collapse
Affiliation(s)
- Cheng Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Yubing Pang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Yuecheng Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Nanping Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Rui Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Ying Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P. R. China
| | - Pengquan Chen
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P. R. China
| | - Toh-Seok Kam
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ting Fan
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| |
Collapse
|
5
|
Zhou C, Lv J, Xu W, Lu H, Kato T, Liu Y, Maruoka K. Highly Selective Monoalkylation of Active Methylene and Related Derivatives using Alkylsilyl Peroxides by a Catalytic CuI‐DMAP System. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Canhua Zhou
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Jiamin Lv
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Weiping Xu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Hanbin Lu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Terumasa Kato
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery Guangdong University of Technology Guangzhou 510006 P. R. China
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo Kyoto 606-8501 Japan
| | - Yan Liu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Keiji Maruoka
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery Guangdong University of Technology Guangzhou 510006 P. R. China
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo Kyoto 606-8501 Japan
| |
Collapse
|
6
|
Kumar R, Nguyen QH, Um TW, Shin S. Recent Progress in Enolonium Chemistry under Metal-Free Conditions. CHEM REC 2021; 22:e202100172. [PMID: 34418282 DOI: 10.1002/tcr.202100172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 11/09/2022]
Abstract
Umpolung approach through inversion of the polarity of conventional enolates, has opened up an unprecedented opportunity in the cross-coupling via alkylation. The enolonium equivalents can be accessed either by hypervalent iodine reagents, activation/oxidation of amides, or the oxidation of alkynes. Under umpolung conditions, highly basic conditions required for classical enolate chemistry can be avoided, and they can couple with unmodified nucleophiles such as heteroatom donors and electron-rich arenes.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Quynh H Nguyen
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Tae-Woong Um
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Seunghoon Shin
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| |
Collapse
|
7
|
Jarret M, Tap A, Turpin V, Denizot N, Kouklovsky C, Poupon E, Evanno L, Vincent G. Bioinspired Divergent Oxidative Cyclizations of Geissoschizine: Total Synthesis of (–)‐17‐nor‐Excelsinidine, (+)‐16‐
epi
‐Pleiocarpamine, (+)‐16‐Hydroxymethyl‐Pleiocarpamine and (+)‐Taberdivarine H. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Maxime Jarret
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) Université Paris‐Saclay, CNRS 91405 Orsay France
| | - Aurélien Tap
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) Université Paris‐Saclay, CNRS 91405 Orsay France
| | - Victor Turpin
- Biomolécules: Conception, Isolement et Synthèse (BioCIS) Université Paris‐Saclay, CNRS, BioCIS 92290 Châtenay‐Malabry France
| | - Natacha Denizot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) Université Paris‐Saclay, CNRS 91405 Orsay France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) Université Paris‐Saclay, CNRS 91405 Orsay France
| | - Erwan Poupon
- Biomolécules: Conception, Isolement et Synthèse (BioCIS) Université Paris‐Saclay, CNRS, BioCIS 92290 Châtenay‐Malabry France
| | - Laurent Evanno
- Biomolécules: Conception, Isolement et Synthèse (BioCIS) Université Paris‐Saclay, CNRS, BioCIS 92290 Châtenay‐Malabry France
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) Université Paris‐Saclay, CNRS 91405 Orsay France
| |
Collapse
|
8
|
Affiliation(s)
- Dilip V. Patil
- Department of Chemistry; Center for New Directions in Organic Synthesis (CNOS); Institution for Natural Sciences; Hanyang University; 222 Wangsimni-ro Seongdong-gu Seoul Korea 14763
| | - Seunghoon Shin
- Department of Chemistry; Center for New Directions in Organic Synthesis (CNOS); Institution for Natural Sciences; Hanyang University; 222 Wangsimni-ro Seongdong-gu Seoul Korea 14763
| |
Collapse
|
9
|
Jarret M, Tap A, Kouklovsky C, Poupon E, Evanno L, Vincent G. Bioinspired Oxidative Cyclization of the Geissoschizine Skeleton for the Total Synthesis of (−)-17-nor-Excelsinidine. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Maxime Jarret
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO); Equipe MSMT; Univ. Paris-Sud, CNRS; Université Paris-Saclay; 15, rue Georges Clémenceau 91405 Orsay, Cedex France
| | - Aurélien Tap
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO); Equipe MSMT; Univ. Paris-Sud, CNRS; Université Paris-Saclay; 15, rue Georges Clémenceau 91405 Orsay, Cedex France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO); Equipe MSMT; Univ. Paris-Sud, CNRS; Université Paris-Saclay; 15, rue Georges Clémenceau 91405 Orsay, Cedex France
| | - Erwan Poupon
- Pharmacognosie et chimie des substances naturelles; BioCIS; Univ. Paris-Sud, Université Paris-Saclay, CNRS; 92290 Châtenay-Malabry France
| | - Laurent Evanno
- Pharmacognosie et chimie des substances naturelles; BioCIS; Univ. Paris-Sud, Université Paris-Saclay, CNRS; 92290 Châtenay-Malabry France
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO); Equipe MSMT; Univ. Paris-Sud, CNRS; Université Paris-Saclay; 15, rue Georges Clémenceau 91405 Orsay, Cedex France
| |
Collapse
|
10
|
Jarret M, Tap A, Kouklovsky C, Poupon E, Evanno L, Vincent G. Bioinspired Oxidative Cyclization of the Geissoschizine Skeleton for the Total Synthesis of (-)-17-nor-Excelsinidine. Angew Chem Int Ed Engl 2018; 57:12294-12298. [PMID: 29575642 DOI: 10.1002/anie.201802610] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/19/2018] [Indexed: 11/10/2022]
Abstract
We report the first total synthesis of (-)-17-nor-excelsinidine, a zwitterionic monoterpene indole alkaloid that displays an unusual N4-C16 connection. Inspired by the postulated biosynthesis, we explored an oxidative coupling approach from the geissoschizine framework to forge the key ammonium-acetate connection. Two strategies allowed us to achieve this goal, namely an intramolecular nucleophilic substitution on a 16-chlorolactam with the N4 nitrogen atom or a direct I2 -mediated N4-C16 oxidative coupling from the enolate of geissoschizine.
Collapse
Affiliation(s)
- Maxime Jarret
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Equipe MSMT, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 15, rue Georges Clémenceau, 91405, Orsay, Cedex, France
| | - Aurélien Tap
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Equipe MSMT, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 15, rue Georges Clémenceau, 91405, Orsay, Cedex, France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Equipe MSMT, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 15, rue Georges Clémenceau, 91405, Orsay, Cedex, France
| | - Erwan Poupon
- Pharmacognosie et chimie des substances naturelles, BioCIS, Univ. Paris-Sud, Université Paris-Saclay, CNRS, 92290, Châtenay-Malabry, France
| | - Laurent Evanno
- Pharmacognosie et chimie des substances naturelles, BioCIS, Univ. Paris-Sud, Université Paris-Saclay, CNRS, 92290, Châtenay-Malabry, France
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Equipe MSMT, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 15, rue Georges Clémenceau, 91405, Orsay, Cedex, France
| |
Collapse
|
11
|
Li YJ, Zhang L, Yan N, Meng XH, Zhao YL. Acid/Base-Co-catalyzed Direct Oxidative α-Amination of Cyclic Ketones: Using Molecular Oxygen as the Oxidant. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yi-Jin Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Faculty of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
| | - Lu Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Faculty of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
| | - Na Yan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Faculty of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
| | - Xiang-He Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Faculty of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Faculty of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
| |
Collapse
|