1
|
van Gunsteren WF, Daura X, Fuchs PFJ, Hansen N, Horta BAC, Hünenberger PH, Mark AE, Pechlaner M, Riniker S, Oostenbrink C. On the Effect of the Various Assumptions and Approximations used in Molecular Simulations on the Properties of Bio-Molecular Systems: Overview and Perspective on Issues. Chemphyschem 2020; 22:264-282. [PMID: 33377305 DOI: 10.1002/cphc.202000968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Indexed: 12/14/2022]
Abstract
Computer simulations of molecular systems enable structure-energy-function relationships of molecular processes to be described at the sub-atomic, atomic, supra-atomic or supra-molecular level and plays an increasingly important role in chemistry, biology and physics. To interpret the results of such simulations appropriately, the degree of uncertainty and potential errors affecting the calculated properties must be considered. Uncertainty and errors arise from (1) assumptions underlying the molecular model, force field and simulation algorithms, (2) approximations implicit in the interatomic interaction function (force field), or when integrating the equations of motion, (3) the chosen values of the parameters that determine the accuracy of the approximations used, and (4) the nature of the system and the property of interest. In this overview, advantages and shortcomings of assumptions and approximations commonly used when simulating bio-molecular systems are considered. What the developers of bio-molecular force fields and simulation software can do to facilitate and broaden research involving bio-molecular simulations is also discussed.
Collapse
Affiliation(s)
- Wilfred F van Gunsteren
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093, Zurich, Switzerland
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine, Universitat Autonoma de Barcelona (UAB), 08193, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Patrick F J Fuchs
- Sorbonne Université, Ecole Normale Supérieure, PSL Research University, CNRS, Laboratoire des Biomolécules (LBM), F-75005, Paris, France.,Université de Paris, UFR Sciences du Vivant, F-75013, Paris, France
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569, Stuttgart, Germany
| | - Bruno A C Horta
- Instituto de Química, Universidade Federal de Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Philippe H Hünenberger
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093, Zurich, Switzerland
| | - Alan E Mark
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Maria Pechlaner
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093, Zurich, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093, Zurich, Switzerland
| | - Chris Oostenbrink
- Institute of Molecular Modelling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
2
|
Smith AA, Ernst M, Riniker S, Meier BH. Localized and Collective Motions in HET-s(218-289) Fibrils from Combined NMR Relaxation and MD Simulation. Angew Chem Int Ed Engl 2019; 58:9383-9388. [PMID: 31070275 PMCID: PMC6618077 DOI: 10.1002/anie.201901929] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/17/2019] [Indexed: 12/20/2022]
Abstract
Nuclear magnetic resonance (NMR) relaxation data and molecular dynamics (MD) simulations are combined to characterize the dynamics of the fungal prion HET-s(218-289) in its amyloid form. NMR data is analyzed with the dynamics detector method, which yields timescale-specific information. An analogous analysis is performed on MD trajectories. Because specific MD predictions can be verified as agreeing with the NMR data, MD was used for further interpretation of NMR results: for the different timescales, cross-correlation coefficients were derived to quantify the correlation of the motion between different residues. Short timescales are the result of very local motions, while longer timescales are found for longer-range correlated motion. Similar trends on ns- and μs-timescales suggest that μs motion in fibrils is the result of motion correlated over many fibril layers.
Collapse
Affiliation(s)
- Albert A. Smith
- Physical ChemistryETH ZurichVladimir-Prelog-Weg 28093ZurichSwitzerland
- Present address: Institut für Medizinische Physik und BiophysikUniversität LeipzigHärtelstraße 16–1804107LeipzigGermany
| | - Matthias Ernst
- Physical ChemistryETH ZurichVladimir-Prelog-Weg 28093ZurichSwitzerland
| | - Sereina Riniker
- Physical ChemistryETH ZurichVladimir-Prelog-Weg 28093ZurichSwitzerland
| | - Beat H. Meier
- Physical ChemistryETH ZurichVladimir-Prelog-Weg 28093ZurichSwitzerland
| |
Collapse
|
3
|
Smith AA, Ernst M, Riniker S, Meier BH. Localized and Collective Motions in HET‐s(218‐289) Fibrils from Combined NMR Relaxation and MD Simulation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Albert A. Smith
- Physical ChemistryETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
- Present address: Institut für Medizinische Physik und BiophysikUniversität Leipzig Härtelstraße 16–18 04107 Leipzig Germany
| | - Matthias Ernst
- Physical ChemistryETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| | - Sereina Riniker
- Physical ChemistryETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| | - Beat H. Meier
- Physical ChemistryETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| |
Collapse
|