1
|
Ghorai S, Natarajan R. Anion-Driven Programmable Chiral Self-Sorting in Metal-Organic Cages and Structural Transformations between Heterochiral and Homochiral Cages. Chemistry 2023; 29:e202203085. [PMID: 36300703 DOI: 10.1002/chem.202203085] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Indexed: 12/12/2022]
Abstract
When a racemic mixture of chiral building blocks self-assembles to form discrete molecular or supramolecular cages, the system can adopt either social or narcissistic chiral self-sorting. However, control over such chiral self-sorting is hard to achieve with a desired choice of outcome. Herein, we report anion templated high-fidelity chiral self-sorting during the coordination-driven self-assembly of [Pd2 L4 ] metal-organic cages, with a racemic mixture of an axially chiral ligand. Upon varying the counter-anions, the outcome of the choice of chiral self-sorting, whether social or narcissistic, leading to kinetically favored heterochiral or thermodynamically favored homochiral cages, can be controlled through specific anion encapsulation. Non-encapsulating anion afforded a mixture of all possible diastereomers. Anion exchange enabled structural transformations between the diastereomers and the conversion of the mixture of diastereomers into homochiral diastereomers.
Collapse
Affiliation(s)
- Sandipan Ghorai
- Organic and Medicinal Chemistry Division, CSIR Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, 700031, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ramalingam Natarajan
- Organic and Medicinal Chemistry Division, CSIR Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, 700031, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Wang Y, Niu D, Ouyang G, Liu M. Double helical π-aggregate nanoarchitectonics for amplified circularly polarized luminescence. Nat Commun 2022; 13:1710. [PMID: 35361805 PMCID: PMC8971395 DOI: 10.1038/s41467-022-29396-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/10/2022] [Indexed: 01/15/2023] Open
Abstract
The canonical double helical π-stacked array of base pairs within DNA interior has inspired the interest in supramolecular double helical architectures with advanced electronic, magnetic and optical functions. Here, we report a selective-recognized and chirality-matched co-assembly strategy for the fabrication of fluorescent π-amino acids into double helical π-aggregates, which show exceptional strong circularly polarized luminescence (CPL). The single crystal structure of the optimal combination of co-assemblies shows that the double-stranded helical organization of these π-amino acids is cooperatively assisted by both CH-π and hydrogen-bond arrays with chirality match. The well-defined spatial arrangement of the π-chromophores could effectively suppress the non-radiative decay pathways and facilitate chiral exciton couplings, leading to superior CPL with a strong figure of merit (glum = 0.14 and QY = 0.76). Our findings might open a new door for developing DNA-inspired chiroptical materials with prominent properties by enantioselective co-assembly initiated double helical π-aggregation.
Collapse
Affiliation(s)
- Yuan Wang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Dian Niu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Guanghui Ouyang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China.
| | - Minghua Liu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China.
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
3
|
Garain S, Sarkar S, Chandra Garain B, Pati SK, George SJ. Chiral Arylene Diimide Phosphors: Circularly Polarized Ambient Phosphorescence from Bischromophoric Pyromellitic Diimides. Angew Chem Int Ed Engl 2022; 61:e202115773. [PMID: 35015335 DOI: 10.1002/anie.202115773] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 12/17/2022]
Abstract
Chiral organic phosphors with circularly polarized room-temperature phosphorescence (CPP) provide new prospects to the realm of circularly polarized luminescence (CPL) materials, owing to the long-lived triplet states and persistent emission. Although several molecular designs show efficient room-temperature phosphorescence (RTP), realization of ambient organic CPP remains a formidable challenge. Herein, we introduce a chiral bischromophoric phosphor design to realize ambient CPP emission by appending molecular phosphors to a chiral diaminocyclohexane core. Thus, solution-processable polymer films of the trans-1,2-diaminocyclohexane (DAC) chiral cores with heavy-atom substituted pyromellitic diimide phosphors, exhibits one of the most efficient exclusive CPP emissions with high phosphorescence quantum yield (≈18 % in air and ≈46 % under vacuum) and significant luminescence dissymmetry factor (|glum |≈4.0×10-3 ).
Collapse
Affiliation(s)
- Swadhin Garain
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Souvik Sarkar
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | | | - Swapan K Pati
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India.,Theoretical Sciences Unit, JNCASR, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| |
Collapse
|
4
|
Garain S, Sarkar S, Garain BC, Pati SK, George SJ. Chiral Arylene Diimide Phosphors: Circularly Polarized Ambient Phosphorescence from Bischromophoric Pyromellitic Diimides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Swadhin Garain
- JNCASR: Jawaharlal Nehru Centre for Advanced Scientific Research New Chemistry Unit INDIA
| | - Souvik Sarkar
- JNCASR: Jawaharlal Nehru Centre for Advanced Scientific Research New Chemistry Unit INDIA
| | - Bidhan Chandra Garain
- JNCASR: Jawaharlal Nehru Centre for Advanced Scientific Research Theoretical Sciences Unit INDIA
| | - Swapan Kumar Pati
- JNCASR: Jawaharlal Nehru Centre for Advanced Scientific Research Theoretical Sciences Unit INDIA
| | | |
Collapse
|
5
|
Controlling the length of porphyrin supramolecular polymers via coupled equilibria and dilution-induced supramolecular polymerization. Nat Commun 2022; 13:248. [PMID: 35017511 PMCID: PMC8752679 DOI: 10.1038/s41467-021-27831-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022] Open
Abstract
Multi-component systems often display convoluted behavior, pathway complexity and coupled equilibria. In recent years, several ways to control complex systems by manipulating the subtle balances of interaction energies between the individual components have been explored and thereby shifting the equilibrium between different aggregate states. Here we show the enantioselective chain-capping and dilution-induced supramolecular polymerization with a Zn2+-porphyrin-based supramolecular system when going from long, highly cooperative supramolecular polymers to short, disordered aggregates by adding a monotopic Mn3+-porphyrin monomer. When mixing the zinc and manganese centered monomers, the Mn3+-porphyrins act as chain-cappers for Zn2+-porphyrin supramolecular polymers, effectively hindering growth of the copolymer and reducing the length. Upon dilution, the interaction between chain-capper and monomers weakens as the equilibria shift and long supramolecular polymers form again. This dynamic modulation of aggregate morphology and length is achieved through enantioselectivity in the aggregation pathways and concentration-sensitive equilibria. All-atom and coarse-grained molecular simulations provide further insights into the mixing of the species and their exchange dynamics. Our combined experimental and theoretical approach allows for precise control of molecular self-assembly and chiral discrimination in complex systems.
Collapse
|
6
|
Yang D, Han J, Sang Y, Zhao T, Liu M, Duan P. Steering Triplet-Triplet Annihilation Upconversion through Enantioselective Self-Assembly in a Supramolecular Gel. J Am Chem Soc 2021; 143:13259-13265. [PMID: 34387996 DOI: 10.1021/jacs.1c05927] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research on chiral selection and recognition not only is of fundamental importance in resolving the origin of biological homochirality, but also is instructive in the fabrication of controlled molecular organization in supramolecular systems to modulate their chirality-related functional properties. Here we report an enantioselective assembly process between a chiral energy donor and two enantiomeric energy acceptors, which further results in chirality-controlled energy transfer and enantioselective triplet-triplet annihilation upconversion (TTA-UC). It is found that the chiral energy donor Pd(II) octaethylporphyrin derivative PdOEP-LG12 (RD) can selectively coassemble with the chiral energy acceptor LGAn (RA) with the same chiral scaffold but tends to form segregation with the energy acceptor DGAn (SA) with the opposite chiral scaffold in a thermodynamic equilibrium state. Thus, the coassembly of RA/RD shows more effective triplet-triplet energy transfer (TTET) and stronger upconverted luminescence and upconverted circularly polarized luminescence in comparison to the segregation of SA/RD. The establishment of such an enantioselective TTA-UC system highlights the applications of chirality-regulated triplet fusion in optoelectronic materials.
Collapse
Affiliation(s)
- Dong Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, People's Republic of China.,Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190 Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jianlei Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, People's Republic of China
| | - Yutao Sang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190 Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tonghan Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Minghua Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, People's Republic of China.,Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190 Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, People's Republic of China
| |
Collapse
|
7
|
Gayen K, Paul S, Hazra S, Banerjee A. Solvent-Directed Transformation of the Self-assembly and Optical Property of a Peptide-Appended Core-Substituted Naphthelenediimide and Selective Detection of Nitrite Ions in an Aqueous Medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9577-9587. [PMID: 34319747 DOI: 10.1021/acs.langmuir.1c01486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study vividly displays the different self-assembling behavior and consequent tuning of the fluorescence property of a peptide-appended core-substituted naphthalenediimide (N1) in the aliphatic hydrocarbon solvents (n-hexane/n-decane/methyl cyclohexane) and in an aqueous medium within micelles. The N1 is highly fluorescent in the monomeric state and self-aggregates in a hydrocarbon solvent, exhibiting "H-type" or "face-to-face" stacking as indicated by a blue shift of absorption maxima in the UV-vis spectrum. In the H-aggregated state, the fluorescence emission of N1 changes to green from the yellow emission obtained in the monomeric state. In the presence of a micelle-forming surfactant, cetyl trimethylammonium bromide (CTAB), the N1 is found to be dispersed in a water medium. Interestingly, upon encapsulation of N1 into the micelle, the molecule alters its self-assembling pattern and optical property compared to its behavior in the hydrocarbon solvent. The N1 exhibits "edge-to-edge" stacking or J aggregates inside the micelle as indicated by the UV-vis spectroscopic study, which shows a red shift of the absorption maxima compared to that in the monomeric state. The fluorescence emission also differs in the water medium with the NDI derivative exhibiting red emission. FT-IR studies reveal that all amide NHs of N1 are hydrogen-bonded within the micelle (in the J-aggregated state), whereas both non-bonding and hydrogen-bonding amide NHs are present in the H-aggregated state. This is a wonderful example of solvent-mediated transformation of the aggregation pattern (from H to J) and solvatochromism of emission over a wide range from green in the H-aggregated state to yellow in the monomeric state and orangish-red in the J-aggregated state. Moreover, the J aggregate has been successfully utilized for selective and sensitive detection of nitrite ions in water even in the presence of other common anions (NO3-, SO42-, HSO4-, CO32-, and Cl-).
Collapse
Affiliation(s)
- Kousik Gayen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Subir Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Soumyajit Hazra
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Arindam Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
8
|
Sarkar A, Sasmal R, Das A, Venugopal A, Agasti SS, George SJ. Tricomponent Supramolecular Multiblock Copolymers with Tunable Composition via Sequential Seeded Growth. Angew Chem Int Ed Engl 2021; 60:18209-18216. [PMID: 34111324 DOI: 10.1002/anie.202105342] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/25/2021] [Indexed: 01/28/2023]
Abstract
Synthesis of supramolecular block co-polymers (BCP) with small monomers and predictive sequence requires elegant molecular design and synthetic strategies. Herein we report the unparalleled synthesis of tri-component supramolecular BCPs with tunable microstructure by a kinetically controlled sequential seeded supramolecular polymerization of fluorescent π-conjugated monomers. Core-substituted naphthalene diimide (cNDI) derivatives with different core substitutions and appended with β-sheet forming peptide side chains provide perfect monomer design with spectral complementarity, pathway complexity and minimal structural mismatch to synthesize and characterize the multi-component BCPs. The distinct fluorescent nature of various cNDI monomers aids the spectroscopic probing of the seeded growth process and the microscopic visualization of resultant supramolecular BCPs using Structured Illumination Microscopy (SIM). Kinetically controlled sequential seeded supramolecular polymerization presented here is reminiscent of the multi-step synthesis of covalent BCPs via living chain polymerization. These findings provide a promising platform for constructing unique functional organic heterostructures for various optoelectronic and catalytic applications.
Collapse
Affiliation(s)
- Aritra Sarkar
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Ranjan Sasmal
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Angshuman Das
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Akhil Venugopal
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Sarit S Agasti
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Subi J George
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| |
Collapse
|
9
|
Sarkar A, Sasmal R, Das A, Venugopal A, Agasti SS, George SJ. Tricomponent Supramolecular Multiblock Copolymers with Tunable Composition via Sequential Seeded Growth. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Aritra Sarkar
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Ranjan Sasmal
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Angshuman Das
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Akhil Venugopal
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Sarit S. Agasti
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Subi J. George
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| |
Collapse
|
10
|
Han Y, Yin Y, Wang F, Wang F. Single-Photon Near-Infrared-Responsiveness from the Molecular to the Supramolecular Level via Platination of Pentacenes. Angew Chem Int Ed Engl 2021; 60:14076-14082. [PMID: 33829624 DOI: 10.1002/anie.202103125] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 12/22/2022]
Abstract
Near-infrared (NIR) responsiveness is important for various applications. Currently, single-photon NIR-responsive systems are rare compared to systems that display two-photon absorption and triplet-triplet annihilation processes. Supramolecular stacking of photo-responsive chromophores results in decreased efficiency due to space-confinement effects. Herein we show that σ-platination of pentacenes is a feasible protocol to build single-photon NIR-responsive systems, with advantages including a low HOMO-LUMO energy gap, high photochemical efficiency, and pathway specificity. The pentacene-to-endoperoxidation transformation is accompanied by color and absorbance changes. The high photo-oxygenation efficiency of σ-platinated pentacenes facilitates NIR responsiveness in one-dimensional supramolecular polymers, resulting in the disappearance of supramolecular chirality signals and disruption of self-assembled nanofibers. Overall, the σ-platination strategy opens up new avenues toward NIR photo-responsive materials at the molecular and supramolecular levels.
Collapse
Affiliation(s)
- Yifei Han
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yueru Yin
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Fan Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
11
|
Single‐Photon Near‐Infrared‐Responsiveness from the Molecular to the Supramolecular Level via Platination of Pentacenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Li Y, Xu L, Kang S, Zhou L, Liu N, Wu Z. Helicity‐ and Molecular‐Weight‐Driven Self‐Sorting and Assembly of Helical Polymers towards Two‐Dimensional Smectic Architectures and Selectively Adhesive Gels. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan‐Xiang Li
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Lei Xu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Shu‐Ming Kang
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Li Zhou
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Na Liu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Zong‐Quan Wu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| |
Collapse
|
13
|
Li Z, Han Y, Nie F, Liu M, Zhong H, Wang F. Bright and Robust Phosphorescence Achieved by Non‐Covalent Clipping. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zijian Li
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yifei Han
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Fude Nie
- Institute of Chemical Materials China Academy of Engineering Physics Mianyang 621900 P. R. China
| | - Mingyang Liu
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Hua Zhong
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
14
|
Li Z, Han Y, Nie F, Liu M, Zhong H, Wang F. Bright and Robust Phosphorescence Achieved by Non-Covalent Clipping. Angew Chem Int Ed Engl 2021; 60:8212-8219. [PMID: 33450117 DOI: 10.1002/anie.202015846] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/05/2021] [Indexed: 12/18/2022]
Abstract
Phosphorescent materials with bright emission in versatile media are important for their practical applications, which require to lower the susceptibility of triplet excitons to surroundings. Herein a non-covalent clipping strategy has been developed to attain this objective, by designing a tweezer receptor to encapsulate PtII -based triplet emitters through two-fold π-stacking interactions. The PtII emitters display robust phosphorescence by virtue of synergistic rigidifying and shielding effects, which are hardly influenced by emitter concentration, oxygen content, and solvent polarity changes. The phosphorescent colors are elaborately modulated by varying ligand substitutes on PtII emitters. Circularly polarized phosphorescence is further amplified for chiral PtII emitters, by taking advantage of dual phosphorescence and chirality enhancement upon non-covalent tweezer complexation. Overall, the clipping approach paves the way for the development of high-performance phosphorescent materials with bright emission, environmental robustness, and facile color tunability.
Collapse
Affiliation(s)
- Zijian Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yifei Han
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Fude Nie
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, P. R. China
| | - Mingyang Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hua Zhong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
15
|
Li Y, Xu L, Kang S, Zhou L, Liu N, Wu Z. Helicity‐ and Molecular‐Weight‐Driven Self‐Sorting and Assembly of Helical Polymers towards Two‐Dimensional Smectic Architectures and Selectively Adhesive Gels. Angew Chem Int Ed Engl 2021; 60:7174-7179. [DOI: 10.1002/anie.202014813] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/06/2021] [Indexed: 02/03/2023]
Affiliation(s)
- Yan‐Xiang Li
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Lei Xu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Shu‐Ming Kang
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Li Zhou
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Na Liu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Zong‐Quan Wu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| |
Collapse
|
16
|
Gainar A, Lai T, Oliveras‐González C, Pop F, Raynal M, Isare B, Bouteiller L, Linares M, Canevet D, Avarvari N, Sallé M. Tuning the Organogelating and Spectroscopic Properties of a
C
3
‐Symmetric Pyrene‐Based Gelator through Charge Transfer. Chemistry 2020; 27:2410-2420. [DOI: 10.1002/chem.202003914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Adrian Gainar
- CNRS Institut Parisien de Chimie Moléculaire Equipe Chimie des Polymères Sorbonne Université 4 Place Jussieu 75005 Paris France
| | - Thanh‐Loan Lai
- Laboratoire MOLTECH-Anjou UNIV. Angers, UMR CNRS 6200, SFR MATRIX 2 Bd Lavoisier 49045 Angers Cedex France
| | - Cristina Oliveras‐González
- Laboratoire MOLTECH-Anjou UNIV. Angers, UMR CNRS 6200, SFR MATRIX 2 Bd Lavoisier 49045 Angers Cedex France
| | - Flavia Pop
- Laboratoire MOLTECH-Anjou UNIV. Angers, UMR CNRS 6200, SFR MATRIX 2 Bd Lavoisier 49045 Angers Cedex France
| | - Matthieu Raynal
- CNRS Institut Parisien de Chimie Moléculaire Equipe Chimie des Polymères Sorbonne Université 4 Place Jussieu 75005 Paris France
| | - Benjamin Isare
- CNRS Institut Parisien de Chimie Moléculaire Equipe Chimie des Polymères Sorbonne Université 4 Place Jussieu 75005 Paris France
| | - Laurent Bouteiller
- CNRS Institut Parisien de Chimie Moléculaire Equipe Chimie des Polymères Sorbonne Université 4 Place Jussieu 75005 Paris France
| | - Mathieu Linares
- Laboratory of Organic Electronics and Group of Scientific Visualization, ITN Linköping University 60174 Norrköping Sweden
- Swedish e-Science Reseach Center (SeRC) Linkoping University 58183 Linköping Sweden
| | - David Canevet
- Laboratoire MOLTECH-Anjou UNIV. Angers, UMR CNRS 6200, SFR MATRIX 2 Bd Lavoisier 49045 Angers Cedex France
| | - Narcis Avarvari
- Laboratoire MOLTECH-Anjou UNIV. Angers, UMR CNRS 6200, SFR MATRIX 2 Bd Lavoisier 49045 Angers Cedex France
| | - Marc Sallé
- Laboratoire MOLTECH-Anjou UNIV. Angers, UMR CNRS 6200, SFR MATRIX 2 Bd Lavoisier 49045 Angers Cedex France
| |
Collapse
|
17
|
Sarkar S, Sarkar A, George SJ. Stereoselective Seed‐Induced Living Supramolecular Polymerization. Angew Chem Int Ed Engl 2020; 59:19841-19845. [DOI: 10.1002/anie.202006248] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/11/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Souvik Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Aritra Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Subi J. George
- New Chemistry Unit and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| |
Collapse
|
18
|
Sarkar S, Sarkar A, George SJ. Stereoselective Seed‐Induced Living Supramolecular Polymerization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Souvik Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Aritra Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Subi J. George
- New Chemistry Unit and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| |
Collapse
|
19
|
Sarkar A, Kölsch JC, Berač CM, Venugopal A, Sasmal R, Otter R, Besenius P, George SJ. Impact of NDI-Core Substitution on the pH-Responsive Nature of Peptide-Tethered Luminescent Supramolecular Polymers. ChemistryOpen 2020; 9:346-350. [PMID: 32195075 PMCID: PMC7080532 DOI: 10.1002/open.202000017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/13/2020] [Indexed: 01/07/2023] Open
Abstract
The pH-responsive nature of two self-assembled NDI-peptide amphiphile conjugates is reported. The diethoxy substituted NDI showed a pH-dependent assembly behaviour, as expected. In contrast, the isopropylamino- and ethoxy-substituted NDI based supramolecular polymer was stable at acidic and basic aqueous conditions. This finding highlights how subtle changes in the molecular design of π-stacked chromophore-peptide conjugates have a drastic impact on their equilibrium structure and ultimately functional properties.
Collapse
Affiliation(s)
- Aritra Sarkar
- New Chemistry UnitSchool of Advanced Materials (SAMAt) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)JakkurBangalore560064India
| | - Jonas C. Kölsch
- Department of ChemistryJohannes Gutenberg-University MainzDuesbergweg 10–1455128MainzGermany
| | - Christian M. Berač
- Department of ChemistryJohannes Gutenberg-University MainzDuesbergweg 10–1455128MainzGermany
- Graduate School of Materials Science in MainzStaudingerweg 955128MainzGermany
| | - Akhil Venugopal
- New Chemistry UnitSchool of Advanced Materials (SAMAt) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)JakkurBangalore560064India
| | - Ranjan Sasmal
- New Chemistry UnitSchool of Advanced Materials (SAMAt) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)JakkurBangalore560064India
| | - Ronja Otter
- Department of ChemistryJohannes Gutenberg-University MainzDuesbergweg 10–1455128MainzGermany
| | - Pol Besenius
- Department of ChemistryJohannes Gutenberg-University MainzDuesbergweg 10–1455128MainzGermany
- Graduate School of Materials Science in MainzStaudingerweg 955128MainzGermany
| | - Subi J. George
- New Chemistry UnitSchool of Advanced Materials (SAMAt) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)JakkurBangalore560064India
| |
Collapse
|
20
|
Deiana M, Chand K, Jamroskovic J, Obi I, Chorell E, Sabouri N. A Light‐up Logic Platform for Selective Recognition of Parallel G‐Quadruplex Structures via Disaggregation‐Induced Emission. Angew Chem Int Ed Engl 2020; 59:896-902. [DOI: 10.1002/anie.201912027] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/23/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Marco Deiana
- Department of Medical Biochemistry and BiophysicsUmeå University 90187 Umeå Sweden
| | - Karam Chand
- Department of ChemistryUmeå University 90187 Umeå Sweden
| | - Jan Jamroskovic
- Department of Medical Biochemistry and BiophysicsUmeå University 90187 Umeå Sweden
| | - Ikenna Obi
- Department of Medical Biochemistry and BiophysicsUmeå University 90187 Umeå Sweden
| | - Erik Chorell
- Department of ChemistryUmeå University 90187 Umeå Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and BiophysicsUmeå University 90187 Umeå Sweden
| |
Collapse
|
21
|
Kuila S, Ghorai A, Samanta PK, Siram RBK, Pati SK, Narayan KS, George SJ. Red-Emitting Delayed Fluorescence and Room Temperature Phosphorescence from Core-Substituted Naphthalene Diimides. Chemistry 2019; 25:16007-16011. [PMID: 31617260 DOI: 10.1002/chem.201904651] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Indexed: 01/24/2023]
Abstract
Unprecedented ambient triplet-mediated emission in core-substituted naphthalene diimide (cNDI) derivatives is unveiled via delayed fluorescence and room temperature phosphorescence. Carbazole core-substituted cNDIs, with a donor-acceptor design, showed deep-red triplet emission in solution processable films with high quantum yield. This study, with detailed theoretical calculations and time-resolved emission experiments, enables new design insights into the triplet harvesting of cNDIs; an important family of molecules which has been, otherwise, extensively been investigated for its n-type electronic character and tunable singlet fluorescence.
Collapse
Affiliation(s)
- Suman Kuila
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| | - Anaranya Ghorai
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India
| | - Pralok K Samanta
- Theoretical Science Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India
| | - Raja B K Siram
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| | - Swapan K Pati
- Theoretical Science Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India
| | - K S Narayan
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| |
Collapse
|
22
|
Deiana M, Chand K, Jamroskovic J, Obi I, Chorell E, Sabouri N. A Light‐up Logic Platform for Selective Recognition of Parallel G‐Quadruplex Structures via Disaggregation‐Induced Emission. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Marco Deiana
- Department of Medical Biochemistry and BiophysicsUmeå University 90187 Umeå Sweden
| | - Karam Chand
- Department of ChemistryUmeå University 90187 Umeå Sweden
| | - Jan Jamroskovic
- Department of Medical Biochemistry and BiophysicsUmeå University 90187 Umeå Sweden
| | - Ikenna Obi
- Department of Medical Biochemistry and BiophysicsUmeå University 90187 Umeå Sweden
| | - Erik Chorell
- Department of ChemistryUmeå University 90187 Umeå Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and BiophysicsUmeå University 90187 Umeå Sweden
| |
Collapse
|
23
|
A de novo strategy for predictive crystal engineering to tune excitonic coupling. Nat Commun 2019; 10:2048. [PMID: 31053704 PMCID: PMC6499792 DOI: 10.1038/s41467-019-10011-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/09/2019] [Indexed: 01/01/2023] Open
Abstract
In molecular solids, the intense photoluminescence (PL) observed for solvated dye molecules is often suppressed by nonradiative decay processes introduced by excitonic coupling to adjacent chromophores. We have developed a strategy to avoid this undesirable PL quenching by optimizing the chromophore packing. We integrated the photoactive compounds into metal-organic frameworks (MOFs) and tuned the molecular alignment by introducing adjustable "steric control units" (SCUs). We determined the optimal alignment of core-substituted naphthalenediimides (cNDIs) to yield highly emissive J-aggregates by a computational analysis. Then, we created a large library of handle-equipped MOF chromophoric linkers and computationally screened for the best SCUs. A thorough photophysical characterization confirmed the formation of J-aggregates with bright green emission, with unprecedented photoluminescent quantum yields for crystalline NDI-based materials. This data demonstrates the viability of MOF-based crystal engineering approaches that can be universally applied to tailor the photophysical properties of organic semiconductor materials.
Collapse
|
24
|
Xue S, Xing P, Zhang J, Zeng Y, Zhao Y. Diverse Role of Solvents in Controlling Supramolecular Chirality. Chemistry 2019; 25:7426-7437. [PMID: 30791175 DOI: 10.1002/chem.201900714] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/20/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Shixin Xue
- College of ChemistryTianjin Normal University 393 Binshui West Road Tianjin 300387 P. R. China
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Pengyao Xing
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Jingbo Zhang
- College of ChemistryTianjin Normal University 393 Binshui West Road Tianjin 300387 P. R. China
| | - Yongfei Zeng
- College of ChemistryTianjin Normal University 393 Binshui West Road Tianjin 300387 P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| |
Collapse
|
25
|
Goudappagouda, Manthanath A, Wakchaure VC, Ranjeesh KC, Das T, Vanka K, Nakanishi T, Babu SS. Paintable Room-Temperature Phosphorescent Liquid Formulations of Alkylated Bromonaphthalimide. Angew Chem Int Ed Engl 2019; 58:2284-2288. [PMID: 30548525 DOI: 10.1002/anie.201811834] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/11/2018] [Indexed: 01/20/2023]
Abstract
Organic phosphors have been widely explored with an understanding that crystalline molecular ordering is a requisite for enhanced intersystem crossing. In this context, we explored the room-temperature phosphorescence features of a solvent-free organic liquid phosphor in air. While alkyl chain substitution varied the physical states of the bromonaphthalimides, the phosphorescence remained unaltered for the solvent-free liquid in air. As the first report, a solvent-free liquid of a long swallow-tailed bromonaphthalimide exhibits room-temperature phosphorescence in air. Doping of the phosphor with carbonyl guests resulted in enhanced phosphorescence, and hence a large-area paintable phosphorescent liquid composite with improved lifetime and quantum yield was developed.
Collapse
Affiliation(s)
- Goudappagouda
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | | | - Vivek Chandrakant Wakchaure
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Kayaramkodath Chandran Ranjeesh
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Tamal Das
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.,Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-, 411008, India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.,Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-, 411008, India
| | - Takashi Nakanishi
- Frontier Molecules Group, International Centre for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Sukumaran Santhosh Babu
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|