1
|
Marotta A, Adams CE, Molloy JJ. The Impact of Boron Hybridisation on Photocatalytic Processes. Angew Chem Int Ed Engl 2022; 61:e202207067. [PMID: 35748797 PMCID: PMC9544826 DOI: 10.1002/anie.202207067] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 12/16/2022]
Abstract
Recently the fruitful merger of organoboron chemistry and photocatalysis has come to the forefront of organic synthesis, resulting in the development of new technologies to access complex (non)borylated frameworks. Central to the success of this combination is control of boron hybridisation. Contingent on the photoactivation mode, boron as its neutral planar form or tetrahedral boronate can be used to regulate reactivity. This Minireview highlights the current state of the art in photocatalytic processes utilising organoboron compounds, paying particular attention to the role of boron hybridisation for the target transformation.
Collapse
Affiliation(s)
- Alessandro Marotta
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Callum E. Adams
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - John J. Molloy
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
2
|
Marotta A, Adams CE, Molloy J. The Impact of Boron Hybridisation on Photocatalytic Processes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alessandro Marotta
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung biomolecular systems GERMANY
| | - Callum E. Adams
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung biomolecular systems department GERMANY
| | - John Molloy
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung Biomolecular Sytems Am Mühlenberg 1 14476 Potsdam GERMANY
| |
Collapse
|
3
|
Guo F, Wang H, Ye X, Tan CH. Advanced Synthesis Using Photocatalysis Involved Dual Catalytic System. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fenfen Guo
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Hong Wang
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Xinyi Ye
- Zhejiang University of Technology College of Pharmaceutical Science 18 Chaowang Road 310014 Hangzhou CHINA
| | - Choon-Hong Tan
- Nanyang Technological University School of Physical and Mathematical Sciences SINGAPORE
| |
Collapse
|
4
|
Pillitteri S, Ranjan P, Van der Eycken EV, Sharma UK. Uncovering the Potential of Boronic Acid and Derivatives as Radical Source in Photo(electro)chemical Reactions. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Serena Pillitteri
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Prabhat Ranjan
- Aachen Maastricht Institute for Biobased Materials (AMIBM) Maastricht University Urmonderbaan 22 6167 RD Geleen The Netherlands
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya street 6 RU-117198 Moscow Russia
| | - Upendra K. Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| |
Collapse
|
5
|
Zhao X, Feng X, Chen F, Zhu S, Qing F, Chu L. Divergent Aminocarbonylations of Alkynes Enabled by Photoredox/Nickel Dual Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Xian Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Xiaoliang Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Fan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Feng‐Ling Qing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| |
Collapse
|
6
|
Zhao X, Feng X, Chen F, Zhu S, Qing FL, Chu L. Divergent Aminocarbonylations of Alkynes Enabled by Photoredox/Nickel Dual Catalysis. Angew Chem Int Ed Engl 2021; 60:26511-26517. [PMID: 34651398 DOI: 10.1002/anie.202111061] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/11/2021] [Indexed: 12/17/2022]
Abstract
A metallaphotoredox-catalyzed strategy for the selective and divergent aminocarbonylation of alkynes with amines and 1 atm of CO is reported. This synergistic protocol not only enables the Markovnikov-selective hydroaminocarbonylation of alkynes to afford α,β-unsaturated amides, but also facilitates a sequential four-component hydroaminocarbonylation/radical alkylation in the presence of tertiary and secondary alkyl boronate esters, which allows for straightforward conversion of alkynes into corresponding amides. Preliminary mechanistic studies disclose that a photoinduced oxidative insertion of aniline and CO into nickel followed by a migratory insertion of (carbamoyl)nickel species could be involved.
Collapse
Affiliation(s)
- Xian Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Xiaoliang Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Fan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Feng-Ling Qing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
7
|
Grygorenko OO, Volochnyuk DM, Vashchenko BV. Emerging Building Blocks for Medicinal Chemistry: Recent Synthetic Advances. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02094 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
8
|
Volochnyuk DM, Gorlova AO, Grygorenko OO. Saturated Boronic Acids, Boronates, and Trifluoroborates: An Update on Their Synthetic and Medicinal Chemistry. Chemistry 2021; 27:15277-15326. [PMID: 34499378 DOI: 10.1002/chem.202102108] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 12/13/2022]
Abstract
This review discusses recent advances in the chemistry of saturated boronic acids, boronates, and trifluoroborates. Applications of the title compounds in the design of boron-containing drugs are surveyed, with special emphasis on α-amino boronic derivatives. A general overview of saturated boronic compounds as modern tools to construct C(sp3 )-C and C(sp3 )-heteroatom bonds is given, including recent developments in the Suzuki-Miyaura and Chan-Lam cross-couplings, single-electron-transfer processes including metallo- and organocatalytic photoredox reactions, and transformations of boron "ate" complexes. Finally, an attempt to summarize the current state of the art in the synthesis of saturated boronic acids, boronates, and trifluoroborates is made, with a brief mention of the "classical" methods (transmetallation of organolithium/magnesium reagents with boron species, anti-Markovnikov hydroboration of alkenes, and the modification of alkenyl boron compounds) and a special focus on recent methodologies (boronation of alkyl (pseudo)halides, derivatives of carboxylic acids, alcohols, and primary amines, boronative C-H activation, novel approaches to alkene hydroboration, and 1,2-metallate-type rearrangements).
Collapse
Affiliation(s)
- Dmitriy M Volochnyuk
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Alina O Gorlova
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| |
Collapse
|
9
|
Morofuji T, Matsui Y, Ohno M, Ikarashi G, Kano N. Photocatalytic Giese-Type Reaction with Alkylsilicates Bearing C,O-Bidentate Ligands. Chemistry 2021; 27:6713-6718. [PMID: 33382504 DOI: 10.1002/chem.202005300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 02/02/2023]
Abstract
Herein, a photocatalytic Giese-type reaction with alkylsilicates bearing C,O-bidentate ligands as stable alkyl radical precursors has been reported. The alkylsilicates were prepared in one step from organometallic reagents. Not only primary, secondary, and tertiary alkyl radicals, but also elusive methyl radicals, could be generated by using the present reaction system. The generated radicals were trapped by electron-deficient olefins bearing various functional groups to give the desired alkyl adducts. The silicon byproduct can be recovered after the photoreaction. The radical generation process was investigated by theoretical calculations, which provided an insight into the facile generation of methyl radicals from methylsilicate bearing C,O-bidentate ligands.
Collapse
Affiliation(s)
- Tatsuya Morofuji
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 1718588, Japan
| | - Yu Matsui
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 1718588, Japan
| | - Misa Ohno
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 1718588, Japan
| | - Gun Ikarashi
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 1718588, Japan.,Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1130033, Japan
| | - Naokazu Kano
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 1718588, Japan
| |
Collapse
|
10
|
Bell NL, Xu C, Fyfe JWB, Vantourout JC, Brals J, Chabbra S, Bode BE, Cordes DB, Slawin AMZ, McGuire TM, Watson AJB. Cu(OTf)
2
‐Mediated Cross‐Coupling of Nitriles and N‐Heterocycles with Arylboronic Acids to Generate Nitrilium and Pyridinium Products**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nicola L. Bell
- EaStCHEM School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - Chao Xu
- EaStCHEM School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - James W. B. Fyfe
- EaStCHEM School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - Julien C. Vantourout
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Jeremy Brals
- EaStCHEM School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - Sonia Chabbra
- EaStCHEM School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - Bela E. Bode
- EaStCHEM School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - David B. Cordes
- EaStCHEM School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - Alexandra M. Z. Slawin
- EaStCHEM School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - Thomas M. McGuire
- AstraZeneca Darwin Building, Unit 310, Cambridge Science Park, Milton Road Cambridge CB4 0WG UK
| | - Allan J. B. Watson
- EaStCHEM School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| |
Collapse
|
11
|
Bell NL, Xu C, Fyfe JWB, Vantourout JC, Brals J, Chabbra S, Bode BE, Cordes DB, Slawin AMZ, McGuire TM, Watson AJB. Cu(OTf) 2 -Mediated Cross-Coupling of Nitriles and N-Heterocycles with Arylboronic Acids to Generate Nitrilium and Pyridinium Products*. Angew Chem Int Ed Engl 2021; 60:7935-7940. [PMID: 33449408 PMCID: PMC8048606 DOI: 10.1002/anie.202016811] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Indexed: 12/25/2022]
Abstract
Metal-catalyzed C-N cross-coupling generally forms C-N bonds by reductive elimination from metal complexes bearing covalent C- and N-ligands. We have identified a Cu-mediated C-N cross-coupling that uses a dative N-ligand in the bond-forming event, which, in contrast to conventional methods, generates reactive cationic products. Mechanistic studies suggest the process operates via transmetalation of an aryl organoboron to a CuII complex bearing neutral N-ligands, such as nitriles or N-heterocycles. Subsequent generation of a putative CuIII complex enables the oxidative C-N coupling to take place, delivering nitrilium intermediates and pyridinium products. The reaction is general for a range of N(sp) and N(sp2 ) precursors and can be applied to drug synthesis and late-stage N-arylation, and the limitations in the methodology are mechanistically evidenced.
Collapse
Affiliation(s)
- Nicola L. Bell
- EaStCHEMSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Chao Xu
- EaStCHEMSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - James W. B. Fyfe
- EaStCHEMSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Julien C. Vantourout
- GlaxoSmithKlineMedicines Research CentreGunnels Wood RoadStevenageHertfordshireSG1 2NYUK
| | - Jeremy Brals
- EaStCHEMSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Sonia Chabbra
- EaStCHEMSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Bela E. Bode
- EaStCHEMSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - David B. Cordes
- EaStCHEMSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | | | - Thomas M. McGuire
- AstraZenecaDarwin Building, Unit 310, Cambridge Science Park, Milton RoadCambridgeCB4 0WGUK
| | - Allan J. B. Watson
- EaStCHEMSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| |
Collapse
|
12
|
Wu C, Bao Z, Dou B, Wang J. Generation of α-Boryl Radicals and Their Conjugate Addition to Enones: Transition-Metal-Free Alkylation of gem-Diborylalkanes. Chemistry 2021; 27:2294-2298. [PMID: 33064327 DOI: 10.1002/chem.202004581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 01/10/2023]
Abstract
A transition-metal-free method for the alkylation of gem-diborylalkanes with α,β-unsaturated ketones has been developed. It is demonstrated that the α-boryl radicals can be generated efficiently from gem-diborylalkanes with the aid of catechol and oxidants. The α-boryl radicals formed through such process can be engaged in conjugate addition reaction with α,β-unsaturated ketones. This transformation is a straightforward method for the synthesis of γ-borylketones.
Collapse
Affiliation(s)
- Chaoqiang Wu
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of, Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Zhicheng Bao
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of, Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Bowen Dou
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of, Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of, Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
13
|
Yin Y, Zhao X, Jiang Z. Advances in the Synthesis of Imine‐Containing Azaarene Derivatives via Photoredox Catalysis. ChemCatChem 2020. [DOI: 10.1002/cctc.202000741] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yanli Yin
- College of Bioengineering Henan University of Technology Zhengzhou Henan 450001 P. R. China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Xiaowei Zhao
- College of Pharmacy Henan University Kaifeng Henan 475004 P. R. China
| | - Zhiyong Jiang
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
14
|
Giustra ZX, Yang X, Chen M, Bettinger HF, Liu S. Accessing 1,2‐Substituted Cyclobutanes through 1,2‐Azaborine Photoisomerization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Xinyu Yang
- Department of Chemistry Boston College Chestnut Hill MA 02467–3860 USA
| | - Min Chen
- Department of Chemistry Boston College Chestnut Hill MA 02467–3860 USA
| | - Holger F. Bettinger
- Institut für Organische Chemie Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Shih‐Yuan Liu
- Department of Chemistry Boston College Chestnut Hill MA 02467–3860 USA
| |
Collapse
|
15
|
Giustra ZX, Yang X, Chen M, Bettinger HF, Liu SY. Accessing 1,2-Substituted Cyclobutanes through 1,2-Azaborine Photoisomerization. Angew Chem Int Ed Engl 2019; 58:18918-18922. [PMID: 31604006 DOI: 10.1002/anie.201912132] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Indexed: 01/02/2023]
Abstract
We provide a seminal example of the utility of the 1,2-azaborine motif as a 4C+1N+1B synthon in organic synthesis. Specifically, conditions for the practically scalable photoisomerization of 1,2-azaborine in a flow reactor are reported that furnish aminoborylated cyclobutane derivatives. The C-B bonds could also be functionalized to furnish a diverse set of highly substituted cyclobutanes.
Collapse
Affiliation(s)
- Zachary X Giustra
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467-3860, USA
| | - Xinyu Yang
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467-3860, USA
| | - Min Chen
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467-3860, USA
| | - Holger F Bettinger
- Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467-3860, USA
| |
Collapse
|
16
|
Shu C, Noble A, Aggarwal VK. Photoredox-Catalyzed Cyclobutane Synthesis by a Deboronative Radical Addition-Polar Cyclization Cascade. Angew Chem Int Ed Engl 2019; 58:3870-3874. [PMID: 30681266 PMCID: PMC6492184 DOI: 10.1002/anie.201813917] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/23/2019] [Indexed: 11/25/2022]
Abstract
Photoredox‐catalyzed methylcyclobutanations of alkylboronic esters are described. The reactions proceed through single‐electron transfer induced deboronative radical addition to an electron‐deficient alkene followed by single‐electron reduction and polar 4‐exo‐tet cyclization with a pendant alkyl halide. Key to the success of the methodology was the use of easily oxidizable arylboronate complexes. Structurally diverse cyclobutanes are shown to be conveniently prepared from readily available alkylboronic esters and a range of haloalkyl alkenes. The mild reactions display excellent functional group tolerance, and the radical addition‐polar cyclization cascade also enables the synthesis of 3‐, 5‐, 6‐, and 7‐membered rings.
Collapse
Affiliation(s)
- Chao Shu
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
17
|
Shu C, Noble A, Aggarwal VK. Photoredox‐Catalyzed Cyclobutane Synthesis by a Deboronative Radical Addition–Polar Cyclization Cascade. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813917] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chao Shu
- School of ChemistryUniversity of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Adam Noble
- School of ChemistryUniversity of Bristol Cantock's Close Bristol BS8 1TS UK
| | | |
Collapse
|
18
|
Liu W, Liu P, Lv L, Li CJ. Metal-Free and Redox-Neutral Conversion of Organotrifluoroborates into Radicals Enabled by Visible Light. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wenbo Liu
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis; McGill University; 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
| | - Peng Liu
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis; McGill University; 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Hubei Provincial Engineering and Technology Research Center for Fluorinated Pharmaceuticals; School of Pharmaceutical Sciences; Wuhan University; Wuhan 430071 China
| | - Leiyang Lv
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis; McGill University; 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
| | - Chao-Jun Li
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis; McGill University; 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
19
|
Liu W, Liu P, Lv L, Li CJ. Metal-Free and Redox-Neutral Conversion of Organotrifluoroborates into Radicals Enabled by Visible Light. Angew Chem Int Ed Engl 2018; 57:13499-13503. [PMID: 30146767 DOI: 10.1002/anie.201807181] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/13/2018] [Indexed: 11/12/2022]
Abstract
Converting organoboron compounds into the corresponding radicals has broad synthetic applications in organic chemistry. To achieve these transformations, various strong oxidants such as Mn(OAc)3 , AgNO3 /K2 S2 O8 , and Cu(OAc)2 , in stoichiometric amounts are required, proceeding by a single-electron transfer mechanism. Established herein is a distinct strategy for generating both aryl and alkyl radicals from organotrifluoroborates through an SH 2 process. This strategy is enabled by using water as the solvent, visible light as the energy input, and diacetyl as the promoter in the absence of any metal catalyst or redox reagent, thereby eliminating metal waste. To demonstrate its synthetic utility, an efficient acetylation to prepare valuable aryl (alkyl) methyl ketones is described and applications to construct C-C, C-I, C-Br, and C-S bonds are also feasible. Experimental evidence suggests that triplet diacetyl serves as the key intermediate in this process.
Collapse
Affiliation(s)
- Wenbo Liu
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec, H3A 0B8, Canada
| | - Peng Liu
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec, H3A 0B8, Canada.,Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Provincial Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Leiyang Lv
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec, H3A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec, H3A 0B8, Canada
| |
Collapse
|
20
|
Xue F, Wang F, Liu J, Di J, Liao Q, Lu H, Zhu M, He L, He H, Zhang D, Song H, Liu XY, Qin Y. A Desulfurative Strategy for the Generation of Alkyl Radicals Enabled by Visible-Light Photoredox Catalysis. Angew Chem Int Ed Engl 2018; 57:6667-6671. [PMID: 29671934 DOI: 10.1002/anie.201802710] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 01/25/2023]
Abstract
Herein, we present a new desulfurative method for generating primary, secondary, and tertiary alkyl radicals through visible-light photoredox catalysis. A process that involves the generation of N-centered radicals from sulfinamide intermediates, followed by subsequent fragmentation, is critical to forming the corresponding alkyl radical species. This strategy has been successfully applied to conjugate addition reactions that features mild reaction conditions, broad substrate scope (>60 examples), and good functional-group tolerance.
Collapse
Affiliation(s)
- Fei Xue
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Falu Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Jiazhen Liu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Jiamei Di
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Qi Liao
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Huifang Lu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Min Zhu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Liping He
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Huan He
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Dan Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Hao Song
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiao-Yu Liu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yong Qin
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
21
|
Xue F, Wang F, Liu J, Di J, Liao Q, Lu H, Zhu M, He L, He H, Zhang D, Song H, Liu X, Qin Y. A Desulfurative Strategy for the Generation of Alkyl Radicals Enabled by Visible‐Light Photoredox Catalysis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fei Xue
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Falu Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Jiazhen Liu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Jiamei Di
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Qi Liao
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Huifang Lu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Min Zhu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Liping He
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Huan He
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Dan Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Hao Song
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Xiao‐Yu Liu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Yong Qin
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| |
Collapse
|